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Detailed Outline 
• Part I: Introduction (5 Min)

– Context

– Literature & Resource

• Part II: Correlation based Anti-Discrimination Learning (45 Min)
– Measures

– Algorithms

– From Correlation to Causation

• Part III: Causal Modeling Background (40 Min, Video by Lu Zhang)
– From Statistics to Causal Modeling

– Structural Causal Model and Causal Graph

– Causal Inference

• Break (9:30am – 10:am)
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Detailed Outline

• Part IV: Causal Modeling based Anti-Discrimination Learning (60 
Min)

– Direct and Indirect Discrimination

– Counterfactual Fairness

– Data discrimination vs. model discrimination

– Other Works

• Part V: Challenges and Directions for Future Research (30 Min)

– Challenges (20 Min, Video by Lu Zhang)

– Future Research

• Discussions and Wrap-up (30 Min)
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Introduction

• Discrimination refers to unjustified distinctions of individuals 
based on their membership in a certain group.

• Federal Laws and regulations disallow discrimination on several 
grounds: 

– Gender, Age, Marital Status, Race, Religion or Belief, Disability or Illness 
……

– These attributes are referred to as the protected attributes.
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Discrimination Cases

• Discrimination in U.S. against people of color and women, 
especially before 1964

• COMPAS – Correctional Offender Management Profiling for 
Alternative Sanctions from Northpointe, Inc. 

– Predictive model for risk of recidivism 

– Prediction accuracy of recidivism for blacks and whites is about the same

– However

• Blacks who did not reoffend were classified as high risk twice as much as 
whites who did not reoffend

• Whites who did reoffend were classified as low risk twice as much as blacks 
who did reoffend 
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Laws and Regulations

• Equal Pay Act of 1963

• Title VII of Civil Rights Act of 1964

• Age Discrimination in Employment Act of 1967

• Vietnam Era Vets Readjustment Act of 1974

• Pregnancy Discrimination Act of 1978

• Americans with Disabilities Act of 1990

• Revision of the Civil Rights Act (1991) 
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Introduction

May 2014

Big data technologies can cause 
societal harms beyond damages to 
privacy, such as discrimination against 
individuals and groups.
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Introduction

February 2015

Pay attention to the potential for big 
data to facilitate discrimination

Expand technical expertise to stop 
discrimination

Deepen understanding of differential 
pricing
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Introduction

May 2016

Support research into mitigating 
algorithmic discrimination, building 
systems that support fairness and 
accountability, and developing strong 

data ethics frameworks.
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Anti-Discrimination Learning
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Anti-Discrimination Learning

• Discrimination Discovery/Detection

– Unveil evidence of discriminatory practices by analyzing the historical 
dataset or the predictive model.

• Discrimination Prevention/Removal

– Ensure non-discrimination by modifying the biased data (before building 
predictive models) or twisting the predictive model.
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Discrimination Categorization

• From the perspective of in what way discrimination occurs, 
discrimination is legally divided into 

– Direct: explicitly based on the protected attributes. 

• E.g., rejecting a qualified female just because of her gender.

– Indirect: based on apparently neutral non-protected attributes but still 
results in unjustified distinctions against individuals from the protected 
group.

• E.g., redlining, where the residential Zip Code of an individual is used for 
making decisions such as granting a loan.
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Disparate Treatment vs. Impact

• Disparate treatment 

– Intentional effect on protected group

– To enforce procedural fairness, the equality of treatments should prohibit 
the use of the protected attribute in the decision process. 

• Disparate impact

– Unintentional adverse impact on members of protected group

– To guarantees outcome fairness, the equality of outcomes should be 
achieved. 
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Discrimination Categorization

• From the perspective of different level of granularity in studying, 
discrimination can be divided into

– System level:  the average discrimination across the whole system, e.g., all 
applicants to a university.

– Group level:  the discrimination that occurs in one particular subgroup, 
e.g., the applicants applying for a particular major, or the applicants with 
a particular score.

– Individual level:  the discrimination that happens to one particular 
individual, e.g., one particular applicant.
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Discrimination Categorization

• Fairness measure for historical data

• Fairness measure for supervised learning

– E.g., pedestrians are stopped on the suspicion of possessing an illegal 
weapon, having different weapon discovery rates for different races.

– Equality of Opportunity

• True positive rate of a predictor should be the same for all the groups. 
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Resources
• Tutorials and keynotes

– Hajian, S., Bonchi, F., Castillo, C. Algorithmic Bias: From Discrimination Discovery 
to Fairness-aware Data Mining. Tutorial of KDD 2016

– Abiteboul, S., Miklau, G., Stoyanovich J. Data Responsibly: Fairness, Neutrality 
and Transparecy in Data Analysis, Tutorial of EDBT 2016 

– Dwork, C. What’s Fair. Keynote of KDD 2017

– Barocas, S., Hardt, M.: Fairness in machine learning. Tutorial of NIPS 2017 

• Survey papers and books
– Magnani, L., Board, E., Longo, G., Sinha, C., Thagard, P.: Discrimination and 

privacy in the information society. Springer (2013)

– Romei, A., Ruggieri, S.: A multidisciplinary survey on discrimination analysis. 
Knowl. Eng. Rev. 29(05), 582–638 (2014)

– Zhang, L., Wu, X.: Anti-discrimination learning: a causal modeling-based 
framework. Int. J. Data Sci. Anal. 4(1), 1-16 (2017)
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Resources
• Conferences/Workshops/Symposiums

– ACM Conference on Fairness, Accountability, and Transparency (ACM FAT*)
– Fairness, Accountability, and Transparency in Machine Learning (FATML)
– AAAI/ACM Conference on AI, Ethics, and Society (AIES) 
– Workshop on Responsible Recommendation (FAT/Rec)
– Workshop on Data and Algorithmic Bias (DAB)
– Ethics in Natural Language Processing
– Workshop on Fairness, Accountability, and Transparency on the Web (FAT/WEB)
– Special Session on Explainability of Learning Machines
– Workshop on Data and Algorithmic Transparency (DAT)
– The Human Use of Machine Learning: An Interdisciplinary Workshop
– International Workshop on Privacy and Discrimination in Data Mining
– Machine Learning and the Law
– Interpretable Machine Learning for Complex Systems
– Workshop on Human Interpretability in Machine Learning
– Workshop on the Ethics of Online Experimentation
– Auditing Algorithms From the Outside: Methods and Implications
– Discrimination and Privacy-Aware Data Mining
– Workshop on Novelty and Diversity in Recommender Systems
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https://fatconference.org/
http://www.fatml.org/
http://www.aies-conference.com/
https://piret.gitlab.io/fatrec/
http://dab.udd.cl/
http://ethicsinnlp.com/
https://fatweb.github.io/
http://gesture.chalearn.org/ijcnn17_explainability_of_learning_machines
http://gesture.chalearn.org/ijcnn17_explainability_of_learning_machines
http://gesture.chalearn.org/ijcnn17_explainability_of_learning_machines
http://datworkshop.org/
http://www.dsi.unive.it/HUML2016/
http://pddm16.eurecat.org/
http://www.mlandthelaw.org/
https://sites.google.com/site/nips2016interpretml/
https://sites.google.com/site/2016whi/
https://sites.google.com/site/ethicsofonlineexperimentation/
https://auditingalgorithms.wordpress.com/
https://sites.google.com/site/dpadm2012/
http://recsys.acm.org/recsys11/divers/
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Notations
• Denote an attribute by an uppercase alphabet, e.g., 𝑋

• Denote a value of attribute 𝑋 by 𝑥

• Denote a subset of attributes by a bold uppercase alphabet, e.g., 𝑿

• Denote a value assignment of attributes 𝑿 by 𝒙

• A binary protected attribute 𝐶 = {𝑐+, 𝑐−} (sometimes use 𝐴 =
𝑎+, 𝑎− or 𝑆 = 𝑠+, 𝑠− ).

• A binary decision 𝐸 = {𝑒+, 𝑒−} (sometimes use 𝑌 = 𝑦+, 𝑦− ).

• Non-protected attributes 𝑿 among which 𝑹 are redlining attributes.

• A predictor of decision 𝐸 = 𝑓(𝐶, 𝑿) (sometimes use 𝑌 = 𝑓(𝐶, 𝑿)).
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Illustrative Example

• Gender discrimination in college admission.

22

No. gender major score height weight ad.

1 F CS B low low reject

2 M CS B median median admit

3 F CS A low low reject

4 M CS A median median admit

5 F CS C low median reject

6 M CS C median median reject

7 M EE B low low reject

𝐶 is gender,  𝑐− = female, 𝑐+=male.
𝐸 is admission,  𝑒−= reject, 𝑒+=admit.



Measuring Discrimination
• Fairness through unawareness

• Disparate impact

• Individual fairness

• Statistical parity

• Equality of opportunity

• Calibration

• Metrics considering 𝑿
– Conditional discrimination

– 𝛼-discrimination based on association rules

– Multi-factor interactions

– belift based on Bayesian networks

• Preference
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Conditional Independence
• Two random variables 𝑋 and 𝑌 are called independent, if for each 

values of 𝑋 and 𝑌, 𝑥 and 𝑦, 
– 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃(𝑋 = 𝑥) ∙ 𝑃(𝑌 = 𝑦) or

– 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 = 𝑃(𝑋 = 𝑥) or 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 = 𝑃(𝑌 = 𝑦)

– Denoted by 𝑋 ⊥ 𝑌

• Two random variables 𝑋 and 𝑌 are called conditionally independent 
given 𝑍, if for each values of (𝑋, 𝑌, 𝑍), (𝑥, 𝑦, 𝑧),
– 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 𝑍 = 𝑧 = 𝑃 𝑋 = 𝑥 𝑍 = 𝑧 ∙ 𝑃 𝑌 = 𝑦 𝑍 = 𝑧 or

– 𝑃(𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧) = 𝑃(𝑋 = 𝑥|𝑍 = 𝑧) or

– 𝑃(𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧) = 𝑃(𝑌 = 𝑦|𝑍 = 𝑧)

– Denoted by 𝑋 ⊥ 𝑌|𝑍

• Note: conditional independence neither implies nor is implied by 
independence.
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Fairness through Unawareness

• A predictor is said to achieve fairness through unawareness if 
protected attributes 𝐶 are not explicitly used in the prediction 
process. 

– The approach of being blind to counter discrimination.

– Prevent disparate treatment.

– Not a sufficient condition to avoid discrimination as 𝑿 can contain 
discriminatory information. 

25Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: ITCS’12 (2012)

𝐸C

𝑋



Disparate Impact

• Disparate Impact (DI) aims for unintentional bias

– No rigid math formula

– Feldman et al.  define DI with risk ratio  DI =
𝑐/(𝑎+𝑐)

𝑑/(𝑏+𝑑)

– propose a test for DI based on how well the C can be predicted from X

𝑓: 𝑋 → 𝐶 is a predictor of 𝐶 from 𝑋.

– Balanced Error Rate (BER): 

BER 𝑓 𝑋 , 𝐶 =
𝑃 𝑓 𝑋 = 𝑐− 𝐶 = 𝑐+ + 𝑃(𝑓 𝑋 = 𝑐+|𝐶 = 𝑐−)

2

– A dataset is 𝜖-fairness if BER 𝑓 𝑋 , 𝐶 > 𝜖

26

Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate 
impact. In: SIGKDD’15 (2015)

𝐸C

𝑋



Individual Fairness

• Similar predictions to similar individuals

• Consistency for individual 𝑖

– 𝐶𝑜𝑛𝑠𝑖 = 1 −
1

𝑘
σ𝑗∈𝑘𝑁𝑁 𝑖 𝑒𝑖 − 𝑒𝑗

– Compare the outcome of an individual with its 𝑘-nearest neighbors

– Note that the similar individuals may be from the protected group and all 
are treated badly.  

• Consistency for the whole data

– 𝐶𝑜𝑛𝑠 = 1 −
1

𝑁𝑘
σ𝑖σ𝑗∈𝑘𝑁𝑁 𝑖 𝑒𝑖 − 𝑒𝑗

• Distance function must be carefully chosen.

27Zemel, R. S., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: ICML’13 (2013)



Situation Testing

• A legally grounded technique for analyzing the discriminatory 
treatment on an individual adopted both in the US and the EU.

• In responding to complaint about discrimination:

1. Pairs of testers who are similar to the individual are sent out to 
participate in the same decision process (e.g., applying for the same job).

2. For each pair, the two testers possess the same characteristics except the 
membership to the protected group.

3. The distinction of decisions between the protected group and the non-
protected group implies discriminatory behavior.

28



𝑘NN-Based Situation Testing

• Given a individuals tuple 𝑡 with 𝑐− and 𝑒−;

• Rank all the individuals according to their distances to 𝑡;

• Select the individuals that closest to 𝑡;

– individuals with 𝑐+ are added into set 𝑺+

– individuals with 𝑐− are added into set 𝑺−;

• If 𝑃 𝑒+ 𝑺+ − 𝑃 𝑒+ 𝑺− > 𝜏, then 𝑡 is considered as being 
discriminated.

29

Luong, B.T., Ruggieri, S., Turini, F.: k-NN as an implementation of situation testing for discrimination discovery and 
prevention. In: SIGKDD’11 (2011)



Statistical Parity
• Risk Difference (RD), UK law

• Risk Ration (RR), EU Court of Justice

• Relative Chance (RC)

• Odds Ratio (OR)

• Extended Risk Difference (ED)

• Extended Risk Ratio (ER)

• Extended Chance (EC)

30

Protected group vs. unprotected group 

Protected group vs. entire population 



Statistical Parity

• Naturally extend to subgroups, e.g., admission rate difference 
between female and male applying for CS

– 𝑃 𝑒+ 𝑐+, 𝑿 = 𝒙 − 𝑃(𝑒+ ∣ 𝑐−, 𝑿 = 𝒙) where 𝑿 can be ∅.

• Individual fairness vs. group fairness

– (Dwork et al.) show if a predictor satisfies Lipschitz property, it also 
achieves statistical parity with certain bias.   

• Statistical parity is independent of the ground truth, i.e., the label 
information, when applied to the predictor. 

– Equal opportunity utilizes the ground truth. 

31Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness. In: ITCS’12 (2012)



Equality of Opportunity
• Equality of opportunity[1], mistreatment parity[2], predictive equality[3]: 

– Target a classifier or predictive model 𝐸.

– Accuracy of predictions is equal across protected and non-protected groups.

• Equalized odds: 

• Equal opportunity:

– True positive rate should be the same for all the groups. 

32

𝑃 𝐸 = 𝑒+ 𝐶 = 𝑐−, 𝐸 = 𝑒 = 𝑃 𝐸 = 𝑒+ 𝐶 = 𝑐+, 𝐸 = 𝑒 , 𝑒 ∈ {𝑒+, 𝑒−}

𝑃 𝐸 = 𝑒+ 𝐶 = 𝑐−, 𝐸 = 𝑒+ = 𝑃 𝐸 = 𝑒+ 𝐶 = 𝑐+, 𝐸 = 𝑒+

[1] Hardt M., Price E., Srebro N.: Equality of opportunity in supervised learning. In: NIPS’16 (2016)
[2] Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K. P.: Fairness beyond disparate treatment & disparate 
impact: Learning classification without disparate mistreatment. In: WWW’17 (2017)
[3] Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic decision making and the cost of fairness. 
In: SIGKDD’17 (2017)



Test Fairness

• Test fairness (calibration)

– 𝑃 𝐸 = 𝑒+ 𝐶 = 𝑐−, 𝐸 = 𝑒+ = 𝑃 𝐸 = 𝑒+ 𝐶 = 𝑐+, 𝐸 = 𝑒+

– Classifier precision should be the same for all the groups.

• COMPAS

– ProPublica showed that COMPAS score used by Northpointe violated 
equalized odds, incurring racial discrimination.

– Northpointe responded that COMPAS score satisfied calibration.

• Kleinberg et al. showed that Equalized Odds and Test Fairness 
cannot be satisfied at the same time except in special cases such 
as zero prediction error or if 𝐶 independent of 𝐸

33Kleinberg, J., Mullainathan, S., Raghavan, M.: Inherent trade-offs in the fair determination of risk 
scores. In: ITCS’17 (2017)



Fundamental Discrimination Criteria

• Independence

– Data: 𝐸 independent of 𝐶 (𝐸 ⊥ 𝐶)

– Prediction: 𝐸 independent of 𝐶 ( 𝐸 ⊥ 𝐶)

• Separation

– 𝐸 independent of 𝐶 conditional on 𝐸 ( 𝐸 ⊥ 𝐶 ∣ 𝐸)

• Sufficiency

– 𝐸 independent of 𝐶 conditional on 𝐸 (𝐸 ⊥ 𝐶| 𝐸)

Barocas, S., Hardt, M.: Fairness in machine learning. Tutorial, NIPS’17 (2017) 34



Conditional Discrimination 

• 𝑑𝑖𝑓𝑓 = 𝑃 𝑒+ 𝑐+ − 𝑃(𝑒+|𝑐−) is a sum of the explainable and the 
bad discrimination.

– 𝐷𝑎𝑙𝑙 = 𝐷𝑒𝑥𝑝 + 𝐷𝑏𝑎𝑑 = 𝑃 𝑒+ 𝑐+ − 𝑃 𝑒+ 𝑐−

• Explainable Discrimination

– 𝐷𝑒𝑥𝑝 = σ𝑖 𝑃 𝑥𝑖 𝑐
+ 𝑃∗(𝑒+|𝑥𝑖) − σ𝑖 𝑃 𝑥𝑖 𝑐

− 𝑃∗(𝑒+|𝑥𝑖)

– 𝑃∗ 𝑒+ 𝑥𝑖 =
𝑃 𝑒+ 𝑥𝑖 , 𝑐

+ +𝑃 𝑒+ 𝑥𝑖 , 𝑐
−

2

– 𝑋 is an explanatory attribute and 𝑥𝑖 is its 𝑖-th domain value

Žliobaite, I., Kamiran, F., Calders, T.: Handling conditional discrimination. In: ICDM’11 (2011) 35



Examples 

𝐷𝑎𝑙𝑙 = 12%
𝐷𝑒𝑥𝑝 = 12%

𝐷𝑏𝑎𝑑 = 0%

𝐷𝑎𝑙𝑙 = 22%
𝐷𝑒𝑥𝑝 = 12%

𝐷𝑏𝑎𝑑 = 10%

Example 1

Major Medicine Computer

Gender female male female male

# of 
applicants

800 200 200 800

Acceptance 
rate (%)

20% 20% 40% 40%

Example 2

Major Medicine Computer

Gender female male female male

# of 
applicants

800 200 200 800

Acceptance 
rate (%)

15% 25% 35% 45%

36

𝑃 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑚𝑎𝑙𝑒 = 36%
𝑃 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑓𝑒𝑚𝑎𝑙𝑒 = 24%

𝑃 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑚𝑎𝑙𝑒 = 41%
𝑃 𝑎𝑐𝑐𝑒𝑝𝑡𝑒𝑑 𝑓𝑒𝑚𝑎𝑙𝑒 = 19%



𝛼-Discrimination in Association Rules

• Direct Discrimination

– 𝐶, 𝑋 → 𝐸

• 𝑒𝑙𝑖𝑓𝑡 𝐶, 𝑋 → 𝐸 =
𝑐𝑜𝑛𝑓 𝐶,𝑋→𝐸

𝑐𝑜𝑛𝑓 𝑋→𝐸
≥ 𝛼

• 𝐶 is a protected attribute

• 𝑋 is a context attribute

• 𝐸 is a decision attribute

• Indirect Discrimination

– 𝑋1, 𝑋2 → 𝐸

• 𝑋1, 𝑋2 are both context attributes

• 𝑋1, 𝑋2 are strongly correlated with 𝐶

• 𝐸 is a decision attribute

{𝑅𝑎𝑐𝑒 = 𝑏𝑙𝑎𝑐𝑘, 𝐼𝑛𝑐𝑜𝑚𝑒 = ℎ𝑖𝑔ℎ }
⟶ 𝐿𝑜𝑎𝑛 = 𝑟𝑒𝑗𝑒𝑐𝑡

{𝑍𝑖𝑝𝐶𝑜𝑑𝑒 = 70201, 𝐼𝑛𝑐𝑜𝑚𝑒 = ℎ𝑖𝑔ℎ }
⟶ 𝐿𝑜𝑎𝑛 = 𝑟𝑒𝑗𝑒𝑐𝑡

Hajian, S., Domingo-Ferrer, J.: A methodology for direct and indirect discrimination prevention in data mining. IEEE 
Trans. Knowl. Data Eng. 25(7), 1445-1459 (2013) 37



Multi-Factor Interaction

• Build a loglinear model from categorical data

• Measure the discrimination based on the strength of 
interactions among categorical attributes in the fitted model

Wu,Y., Wu,X.: Using loglinear model for discrimination discovery and prevention. In: DSAA’16 (2016)

𝐼𝑖𝑗|𝑘
𝐶𝐸|𝑋

= 𝛾𝑖𝑘
𝐶𝐸 + 𝛾𝑖𝑗𝑘

𝐶𝐸𝑋

log 𝑂𝑅 = 𝐼𝑖𝑗|𝑘
𝐶𝐸|𝑋

+ 𝐼
𝑖′𝑗′|𝑘

𝐶𝐸|𝑋
− 𝐼

𝑖′𝑗|𝑘

𝐶𝐸|𝑋
− 𝐼

𝑖𝑗′|𝑘

𝐶𝐸|𝑋

log 𝑚𝑖𝑗𝑘 = 𝛾 + 𝛾𝑖
𝐶 + 𝛾𝑗

𝐸 + 𝛾𝑘
𝑋

+𝛾𝑖𝑗
𝐶𝐸 + 𝛾𝑖𝑘

𝐶𝑋 + 𝛾𝑗𝑘
𝑋𝐸

+𝛾𝑖𝑗𝑘
𝐶𝐸𝑋

𝐶𝑖 = 𝑓𝑒𝑚𝑎𝑙𝑒
𝑋𝑗 = 𝐶𝑆

𝐸𝑘 = 𝑟𝑒𝑗𝑒𝑐𝑡

Data:
A 3-D table (𝐶, 𝐸, 𝑋) where a 
cell is denoted as (𝑖, 𝑗, 𝑘,𝑚𝑖𝑗𝑘)

• Extendable to multiple protected/decision attributes
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𝑏𝑒𝑙𝑖𝑓𝑡 Based on Bayesian networks

• 𝑏𝑒𝑙𝑖𝑓𝑡 =
𝑃(𝑒+|𝑐1,𝑐2,…𝑐𝑙, 𝑥1,𝑥2,…𝑥𝑚, 𝑟1,𝑟2,…𝑟𝑛)

𝑃′(𝑒+|𝑥1,𝑥2,…𝑥𝑚)

– 𝐶𝑖 is a protected attribute

– 𝑋𝑖 is a non-protected attribute

– 𝑅𝑖 is a redlining attribute

– 𝑏𝑒𝑙𝑖𝑓𝑡 = 1: perfect equality

• Two bayesian networks are built from data to calculate
conditional probabilities.

39Mancuhan, K., Clifton, C.: Combating discrimination using Bayesian networks. Artif. Intell. Law 22(2), 211–238 (2014)



Discrimination discovery using 𝑏𝑒𝑙𝑖𝑓𝑡

• Build a Bayesian network 𝐺 from training dataset 𝐷

• Build a relative Bayesian network 𝐺′ by removing protected 
attributes and any attribute directly connected to them in 𝐺

• For each instance in 𝐷

– Compute 𝑃(𝑒+|𝑐1, 𝑐2, … 𝑐𝑙 , 𝑥1 , 𝑥2, … 𝑥𝑚, 𝑟1 , 𝑟2, … 𝑟𝑛) over 𝐺

– Compute 𝑃′(𝑒+|𝑥1, 𝑥2, … 𝑥𝑚) over 𝐺′

– Calculate 𝑏𝑒𝑙𝑖𝑓𝑡 and report discrimination if it exceeds a threshold
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Preference-based Fairness

• Inspired by fair division and envy-freeness

• Preference-based notions relax stringent parity-based notations 

– Preferred treatment

• Ensure each sensitive attribute group prefers the set of decisions over the set 
they would have received if they had been a different group .

– Preferred impact

• Ensure each sensitive attribute group prefers the set of decisions over the set 
they would have received under the criterion of impact parity.

– Pareto-efficiency

• A Pareto-efficient solution is such that there can be no increase in the benefit 
of one group without strictly decreasing the benefit of another group.

41

Zafar, M. B., Valera, I., Rodriguez, M., Gummadi, K., Weller, A. : From parity to preference-based notations of fairness 
in classification. In: NIPS’17 (2017)
Gajane, P., Pechenizkiy, M.: On formalizing fairness in prediction with machine learning. Preprint (2018)
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Anti-Discrimination Learning

43

Historical 
Data

Predictive 
Model

New
Data

Decision

Train

Build discrimination-free predictive model

Predict

• Pre-processing: modify the 
training data

• In-processing:  adjust the 
learning process

• Post-processing:  directly 
change the predicted labels



Anti-Discrimination Learning

• Pre-processing

– Data modification

– Fair data representation

– Fair data generation

• In-processing

– Regularization

– Explicit constraints

• Post-processing
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Discrimination Prevention
• Data manipulation (Pre-processing)

– Kamiran, F., Calders, T.: Data preprocessing techniques for classification without 
discrimination. Knowl. Inf. Syst. 33(1), 1-33 (2012)

• Suppression/Massaging/Reweighting/Sampling (uniform vs. preferential sampling)

– Hajian, S., Domingo-Ferrer, J.: A methodology for direct and indirect discrimination 
prevention in data mining. IEEE Trans. Knowl. Data Eng. 25(7), 1445–1459 (2013)

– Zemel, R. S., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: 
ICML’13 (2013)

– Mancuhan, K., Clifton, C.: Combating discrimination using Bayesian networks. Artif. 
Intell. Law 22(2), 211–238 (2014)

– Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: 
Certifying and removing disparate impact. In: SIGKDD’15 (2015)

– Edwards, H., Storkey, A.: Censoring representations with an adversary. In: ICLR’16 (2016)

– Madras, D., Creager, E., Pitassi, T., Zemel, R.: Learning adversarially fair and transferable 
representations. In: ICML’18 (2018)
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Massaging

46

• Flip the decision of some individuals according to a ranker

1. Learn a classifier and estimate the predicted probability of the positive 
decision of each individual

2. sort the individuals of four groups according to this probability

3. Flip the decision of individuals that close to the bottom/top

𝑅𝐷 =
6

10
−

4

10
= 0.2

𝑅𝐷 =
5

10
−

5

10
= 0.0

Kamiran, F., Calders, T.: Classifying without discriminating. IC4’09 (2009)

probability

- - - - - -

+ + + + + +

- - - -

+ + + +

𝑐+𝑒+

𝑐+𝑒−

𝑐−𝑒−
𝑐−𝑒+

probability

- - - - - +

- + + + + +

- - - -

+ + + +

𝑐+𝑒+

𝑐+𝑒−

𝑐−𝑒−
𝑐−𝑒+



Preferential Sampling

• Partition the data into 4 groups (𝑐+𝑒+, 𝑐−𝑒−, 𝑐−𝑒+, 𝑐+𝑒−) and two 
are under-sampled and two over-sampled

• Select and remove/duplicate the individuals close to the 
top/bottom

47Kamiran, F., Calders, T.: Data preprocessing techniques for classification without discrimination. Knowl. Inf. 
Syst. 33(1), 1–33 (2012)

Remove
Duplicate

probability

- -
--

- -
--

+ + +
+ + +

+ + +
+ + +

- - -
- -

- -
- - -

- + +
+ + +

+ +
+ +

𝑐+𝑒+

𝑐−𝑒− 𝑐−𝑒+

𝑐+𝑒−

probability

- -
--

- -
--

+ +
+ +

+ + +
+ + +

- - -
- -

- -
- - -

+ +
+ + +

+ +
+ +

𝑐+𝑒+

𝑐−𝑒− 𝑐−𝑒+

𝑐+𝑒−

-
-

+

𝑅𝐷 =
12

20
−

9

20
= 0.15 𝑅𝐷 =

10

20
−
10

20
= 0



Conditional Discrimination 

• diff = 𝑃 𝑒+ 𝑐+ − 𝑃(𝑒+|𝑐−) is a sum of the explainable and the 
bad discrimination.

– 𝐷𝑎𝑙𝑙 = 𝐷𝑒𝑥𝑝 + 𝐷𝑏𝑎𝑑 = 𝑃 𝑒+ 𝑐+ − 𝑃 𝑒+ 𝑐−

• Explainable Discrimination

– 𝐷𝑒𝑥𝑝 = σ𝑖 𝑃 𝑥𝑖 𝑐
+ 𝑃∗(𝑒+|𝑥𝑖) − σ𝑖 𝑃 𝑥𝑖 𝑐

− 𝑃∗(𝑒+|𝑥𝑖)

– 𝑃∗ 𝑒+ 𝑥𝑖 =
𝑃 𝑒+ 𝑥𝑖 , 𝑐

+ +𝑃 𝑒+ 𝑥𝑖 , 𝑐
−

2

– 𝑋 is an explanatory attribute and 𝑥𝑖 is its 𝑖-th domain value

• Zlibobaite et al. propose local massaging and local preferential 
sampling to removal bad discrimination 

Žliobaite, I., Kamiran, F., Calders, T.: Handling conditional discrimination. In: ICDM’11 (2011) 48



Removing Disparate Impact

• Modify the distribution of 𝑋 so that 𝐶 is not predictable from 𝑋.

49

𝐸C

𝑋

𝐸C

𝑋′

Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate 
impact. In: SIGKDD’15 (2015)



Learning Fair Representation
• Find a good representation of the data

– Encode the data as well as possible

– Obfuscate the sensitive information

• Minimize the objective function

– 𝐿𝑧 captures the statistical parity of the representation.

– 𝐿𝑥 constrains the re-construction error.

– 𝐿𝑦 requires the accurate prediction.

50

𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧 are hyper-parameters

Zemel, R. S., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning Fair Representations. In: ICML’13 (2013) 

𝑿 𝒁 𝑌 = 𝑓(𝒁)
Fair & Good 



Fair Representations

• Learn fair representations for prediction task
– Learn representations of data via auto-encoder.

– An adversary tries to recover a sensitive attribute 𝐶 from the 
representation. The encoder tries to make 𝐶 impossible to recover.

– As a result, the prediction based on the fair representations does not 
depend on sensitive attribute 𝐶.

• Loss function 𝐸 Classifier 𝑅

Encoder

Adversary

Decoder

𝐶

𝑋

min
𝜃,𝜂

max
𝜙

𝐿 = 𝛼𝒞𝜃 𝑋, 𝑅 + 𝛽ℬ𝜂 𝐸, 𝑅 + 𝛾𝒟𝜃,𝜙(𝐶, 𝑅)

Edwards, H., Storkey, A.: Censoring representations with an adversary. In: ICLR’16 (2016)
51.Madras, D., Creager, E., Pitassi, T., Zemel, R.: Learning adversarially fair and transferable representations. In: ICML’18 
(2018)
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min
𝜃,𝜂

max
𝜙

𝐿 = 𝛼𝒞𝜃 𝑋, 𝑅 + 𝛽ℬ𝜂 𝐸, 𝑅 + 𝛾𝒟𝜃,𝜙(𝐶, 𝑅)

Fair Representations

• Learn fair representations for prediction task
– Learn representations of data via auto-encoder.

– An adversary tries to recover a sensitive attribute 𝐶 from the 
representation. The encoder tries to make 𝐶 impossible to recover.

– As a result, the prediction based on the fair representations does not 
depend on sensitive attribute 𝐶.

• Loss function 𝐸 Classifier 𝑅

Encoder

Adversary

Decoder

𝐶

𝑋Auto-encoder loss: 𝒞𝜃 𝑋, 𝑅 = 𝑋 − 𝐷𝑒𝑐 𝑅 2
2

Learn useful data representations
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min
𝜃,𝜂

max
𝜙

𝐿 = 𝛼𝒞𝜃 𝑋, 𝑅 + 𝛽ℬ𝜂 𝐸, 𝑅 + 𝛾𝒟𝜃,𝜙(𝐶, 𝑅)

Fair Representations

• Learn fair representations for prediction task
– Learn representations of data via auto-encoder.

– An adversary tries to recover a sensitive attribute 𝐶 from the 
representation. The encoder tries to make 𝐶 impossible to recover.

– As a result, the prediction based on the fair representations does not 
depend on sensitive attribute 𝐶.

• Loss function 𝐸 Classifier 𝑅

Encoder

Adversary

Decoder

𝐶

𝑋Classification loss: ℬ𝜂 𝐸, 𝑅 = −𝐸 · log 𝑃𝑟𝑒𝑑 𝑅 − 1 − 𝐸 · log(1 − 𝑃𝑟𝑒𝑑(𝑅))

Train prediction model
53



• Loss function

– Risk difference (Edwards, et al. 2016)
min
𝜃
max
𝜙
𝒟𝜃,𝜙 𝐶, 𝑅 = 𝐶 · log 𝐴𝑑𝑣 𝑅 + 1 − 𝐶 · log(1 − 𝐴𝑑𝑣(𝑅))

– Equalized odds (Madras, et al. 2018)

Fair Representations

𝐸 Classifier 𝑅

Encoder

Adversary

Decoder

𝐶

𝑋

min
𝜃,𝜂

max
𝜙

𝐿 = 𝛼𝒞𝜃 𝑋, 𝑅 + 𝛽ℬ𝜂 𝐸, 𝑅 + 𝛾𝒟𝜃,𝜙(𝐶, 𝑅)

Adversarial training to remove the information of sensitive attribute 

min
𝜃
max
𝜙
𝒟𝜃,𝜙 𝐶, 𝑅 = 2 − 

𝑖,𝑗 ∈ 0,1 2

1

|𝑽𝑖
𝑗
|



𝑐,𝑥 ∈𝑽𝑖
𝑗

|𝐴𝑑𝑣 𝑅 − 𝑅|

where    𝑽𝑖
𝑗
= { 𝑐, 𝑥, 𝑒 ∈ 𝑽|𝑐 = 𝑖, 𝑒 = 𝑗}
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Discrimination Prevention

• Algorithm tweak (In-processing)

– Calders, T., Verwer, S.: Three naive bayes approaches for discrimination-
free classification. Data Min. Knowl. Discov. 21(2), 277-292 (2010)

– Kamishima, T., Akaho, S., and Sakuma J.: Fairness-aware learning through 
regularization approach. In: ICDMW’11 (2011)

– Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K. P.: Fairness 
constraints: Mechanisms for fair classification. In: AISTAS’17 (2017)

– Zafar, M.B., Valera, I., Gomez Rodriguez, M., Gummadi, K.P.: Fairness 
beyond disparate treatment & disparate impact: Learning classification 
without disparate mistreatment. In: WWW’17 (2017)

– Corbett-Davies, S., Pierson, E., Feller, A., Goel, S., Huq, A.: Algorithmic 
decision making and the cost of fairness. In: SIGKDD’17 (2017)
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Fair Regularization for Classification

• Objective functions:

• Define the discrimination regularization term using mutual 
information between 𝑌 and 𝑆:

Maximize Log-likelihood Avoid discrimination Avoid overfitting

෪𝑃𝑟 ⋅ : induced by the training sample
𝑃𝑟[⋅]: induced by the model

Kamishima, T., Akaho, S., and Sakuma J.: Fairness-aware learning through regularization approach. In: ICDMW’11 (2011) 56



Fairness Constraints for Classification

• Classification fairness is measured using risk ratio

– Classifier 𝑓(𝒙) is learned by minimizing a loss function 𝐿(𝜽).

– 𝑓 𝒙𝑖 = 1 if 𝑑𝜽 𝒙𝑖 ≥ 0 and 𝑓 𝒙𝑖 = −1 otherwise.

• Use the covariance as the measure of fairness.

• Two formulations

57

𝐶𝑜𝑣 𝑐, 𝑑𝜽 𝒙 = 𝐸 𝑐 − ҧ𝑐 𝑑𝜽 𝒙 − 𝐸 𝑐 − ҧ𝑐 ҧ𝑑𝜽 𝒙 ≈
1

𝑁


𝑖=1

𝑁

𝑐𝑖 − ҧ𝑐 𝑑𝜽(𝒙𝑖)

𝐿(𝜽)Minimize

Subject to
1

𝑁


𝑖=1

𝑁

𝑐𝑖 − ҧ𝑐 𝑑𝜽(𝒙𝑖) ≤ 𝜏

1

𝑁


𝑖=1

𝑁

𝑐𝑖 − ҧ𝑐 𝑑𝜽(𝒙𝑖) ≥ −𝜏

Minimize

Subject to

1

𝑁


𝑖=1

𝑁

𝑐𝑖 − ҧ𝑐 𝑑𝜽(𝒙𝑖)

𝐿 𝜽 ≤ 1 + 𝛾 𝐿(𝜽∗)

Zafar, M. B., Valera, I., Gomez Rodriguez, M., Gummadi, K. P.: Fairness constraints: Mechanisms for fair classification. In: 
AISTAS’17 (2017)



Discrimination Prevention

• Prediction changing (Post-processing)

– Kamiran, F., Karim, A., Zhang, X.: Decision theory for discrimination-aware 
classification. In: ICDM’12 (2012)

– Hajian, S., Domingo-Ferrer, J., Monreale, A., Pedreschi, D., Giannotti, F.: 
Discrimination-and privacy-aware patterns. Data Min. Knowl. Discov. 
29(6), 1733-1782 (2015)

– Hardt M., Price E., Srebro N.: Equality of opportunity in supervised 
learning. In: NIPS’16 (2016)
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Post-processing: Manipulation

• Some in-processing techniques work for post-processing

– Massaging

– Uniform/preferential sampling
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Decision Theory for Discrimination-aware Classification

• Hypothesis: discrimination decisions are made close to the 
decision boundary

– Reject Option based Classification (ROC)

• For probabilistic classifiers, 𝑃 ො𝑦 = + 𝒙 = 0.5 ⇒ discrimination.

• Define max 𝑃 ො𝑦 = + 𝒙 − 𝑃 ො𝑦 = − 𝒙 < 𝜃 as the critical region.

• Relabel the prediction of individuals in the critical regions.

– Discrimination-Aware Ensemble (DAE)

• For ensemble methods, larger disagreement of classifiers ⇒ discrimination

• Define disagreement

• Relabel the prediction of individuals with large disagreement 

Kamiran, F., Karim, A., Zhang, X.: Decision theory for discrimination-aware classification. In: ICDM’12 (2012) 60



Construct Equalized Odds Predictor

• Derive a non-discriminatory predictor ෨𝑌 from a learned predictor 𝑌
by flipping the prediction:

– These four parameters, 𝑝 = (𝑝00, 𝑝01, 𝑝10, 𝑝11), together specify the 

derived predictor ෨𝑌𝑝 .

• Finding the optimal, non-discriminatory predictor ෨𝑌𝑝 is a linear 

optimization problem:

61Hardt M., Price E., Srebro N.: Equality of opportunity in supervised learning. In: NIPS’16 (2016)

Make ෨𝑌𝑝 close to 𝑌

Ensure that ෨𝑌𝑝 is derived from 𝑌

Ensure equalized odds

𝑝𝑦𝑎 = 𝑃( ෨𝑌 = 1 ∣ 𝑌 = 𝑦, 𝐴 = 𝑎)
𝐴: Protected attribute
𝑌: Label
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Correlation vs. Causation

• Correlation means two variables are related but does not tell why. 

• A strong correlation does not necessarily mean that changes in 
one variable causes changes in the other.

• 𝑋 and 𝑌 are correlated

– 𝑋 causes 𝑌 or 𝑌 causes 𝑋

– 𝑋 and 𝑌 are caused by a third variable 𝑍

• In order to imply causation, a true experiment must be performed 
where subjects are randomly assigned to different conditions. 

63

𝑋

𝑍

𝑌



Gap Between Association and Causation

• Association does not mean causation, but discrimination is causal.

– whether an individual would receive the same decision had the individual 
been of a different race (sex, age, religion, etc.)

• Knowledge about relationships between all attributes should be 
taken into consideration. 

• The golden rule of causal analysis: no causal claim can be 
established by a purely statistical method.

– Need causal-aware methods in discovering and preventing discrimination.
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Causal based Discrimination Discovery
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Preliminary
Causal Modelling
Path-specific
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Causal based Discrimination Discovery
• Preliminary work

– Bonchi, F., Hajian, S., Mishra, B., Ramazzotti, D.: Exposing the probabilistic causal 
structure of discrimination. Int. J. Data Sci. Anal. 3(1), 1–21 (2017)

– Zhang, L., Wu, Y., Wu, X.: On discrimination discovery using causal networks. In: 
SBP-BRiMS 2016 (2016)

• Causal-modeling-based
– Zhang, L., Wu, Y., Wu, X.: Situation testing-based discrimination discovery: a 

causal inference approach. In: IJCAI’16 (2016)

– Zhang, L., Wu, Y., Wu, X.: Achieving non-discrimination in data release. In: 
SIGKDD’17 (2017)

– Zhang, L., Wu, X.: Anti-discrimination learning: a causal modeling-based 
framework. Int. J. Data Sci. Anal. 4(1), 1-16 (2017)

– Zhang, L., Wu, Y., Wu, X.: Achieving non-discrimination in prediction. In: IJCAI’18 
(2018)

66



Causal based Discrimination Discovery

• Path-specific-effect-based

– Zhang, L., Wu, Y., Wu, X.: A causal framework for discovering and 
removing direct and indirect discrimination. In: IJCAI’17 (2017)

– Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., 
Schölkopf, B.: Avoiding discrimination through causal reasoning. In: 
NIPS’17 (2017)

– Nabi, R., Shpitser, I.: Fair inference on outcomes. In: AAAI’18 (2018)

– Wu, Y., Zhang, L., Wu, X.: On discrimination discovery and removal in 
ranked data using causal graph. In: SIGKDD’18 (2018)
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Causal based Discrimination Discovery

• Counterfactual-based

– Kusner, M.J., Loftus, J., Russell, C, Silva, R.: Counterfactual fairness. In: 
NIPS’17 (2017)

– Russell, C., Kusner, M.J., Loftus, J., Silva, R.: When worlds collide: 
integrating different counterfactual assumptions in fairness. In: NIPS’17 
(2017)

– Zhang, J., Bareinboim, E.: Fairness in decision-making – the causal 
explanation formula. In: AAAI’18 (2018)

– Zennaro, F.M., Ivanovska, M.: Pooling of causal models under 
counterfactual fairness via causal judgement aggregation. Preprint (2018)
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Techniques in Causal Modeling

• Causal model and causal graph

– Markovian model and semi-Markovian model

– Conditional independence and d-separation

• Causal inference

– Intervention and do-operator

– Path-specific effect

– Counterfactual analysis

70

How to construct causal graph is omitted.



Lessons of Causal Inference (Pearl)

1. No cause in — no cause out

2. Data

Causal assumptions/knowledge

3. Causal assumptions/knowledge cannot 
be expressed in the mathematical 
language of standard statistics.

4. Need ways of encoding causal 
assumptions/knowledge mathematically 
and test their implications.

71

causal conclusions⇒}



From Statistics to Causal Modeling

• Traditional statistical inference paradigm:

• What is the probability of getting Grade A for the students who 
study 1 hour each day?

72

Estimate 𝑄(𝐷) = 𝑃𝐷( 𝐸 = ‘𝐴’ | 𝐻 = 1 )

𝐸 (Exam Grade) 
𝐻 (Hour of Study)
𝐼 (Interest)
𝑊 (Working Strategy)

Data

Inference

Q(D)
(Aspects of D)

Joint
Distribution

D



From Statistics to Causal Modeling

• What is the probability of getting Grade A if a new policy requires 
all students to study 2 hours each day?

– The question cannot be solved by statistics.
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Estimate 𝑄 𝐷′ = 𝑃𝐷′( 𝐸 = ‘𝐴’ )

Data

Inference

Q(D′)
(Aspects of D′)

change

Joint
Distribution

D

Joint
Distribution

D′

𝐷′ represents the joint distribution 
after adopting the new policy.



From Statistics to Causal Modeling

• What is the probability of getting Grade A if a new policy requires 
all students to study 2 hours each day?

– The question cannot be solved by statistics.
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𝑃𝐷′( 𝐸 = ‘𝐴’ ) ≠ 𝑃𝐷 ( 𝐸 = ‘𝐴’ | 𝐻 = 2 )

Data

Inference

Q(D′)
(Aspects of D′)

change

Joint
Distribution

D

Joint
Distribution

D′

The probability of getting Grade A of the students who study 2 
hours each day at the first place.



From Statistics to Causal Modeling

• Causal inference
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𝑀 – Data generation model that encodes the 
causal assumptions/knowledge.
𝐷 – model of data, 𝑀 – model of reality

Data

Inference

Q(M)
(Aspects of M)

Data 
Generating

Model

Joint
Distribution

MD



From Statistics to Causal Modeling

• Causal inference
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Data 
Generating

Model

Joint
Distribution

Data 
Generating

Model

Joint
Distribution

change

𝐷

𝐷′

𝑀

𝑀′

𝑄(𝑀′)
Inference
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Structural Causal Model 

• A theory of inferred causation.

• Describe how causal relationships can be inferred from 
nontemporal statistical data if one makes certain assumptions 
about the underlying process of data generation.

• Developed since 1988, still growing at an increasing speed.
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Structural Causal Model

• A causal model is triple ℳ =< 𝑼,𝑽, 𝑭 >, where 

– 𝑼 is a set of exogenous (hidden) variables whose values are determined 
by factors outside the model;

– 𝑽 = {𝑋1, ⋯ , 𝑋𝑖 , ⋯ } is a set of endogenous (observed) variables whose 
values are determined by factors within the model;

– 𝑭 = {𝑓1, ⋯ , 𝑓𝑖 , ⋯ } is a set of deterministic functions where each 𝑓𝑖 is a 
mapping from 𝑼 × (𝑽 ∖ 𝑋𝑖) to 𝑋𝑖. Symbolically, 𝑓𝑖 can be written as

where 𝒑𝒂𝑖 is a realization of 𝑋𝑖’s parents in 𝑽, i.e., 𝑷𝒂𝑖 ⊆ 𝑽, and 𝒖𝑖 is a 
realization of 𝑋𝑖’s parents in 𝑼, i.e., 𝑼𝑖 ⊆ 𝑼.
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𝑥𝑖 = 𝑓𝑖(𝒑𝒂𝑖 , 𝒖𝑖)



Causal Graph

• Each causal model ℳ is associated with a direct graph 𝒢 = (𝒱, ℰ), 
where

– 𝒱 is the set of nodes represent the variables 𝑼 ∪ 𝑽 in ℳ;

– ℰ is the set of edges determined by the structural equations in ℳ: for 𝑋𝑖, 
there is an edge pointing from each of its parents 𝑷𝒂𝑖 ∪ 𝑼𝑖 to it.

• Each direct edge represents the potential direct causal relationship.

• Absence of direct edge represents zero direct causal relationship.

• Assuming the acyclicity of causality, 𝒢 is a directed acyclic graph 
(DAG).

• Standard terminology

– parent, child, ancestor, descendent, path, direct path
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A Causal Model and Its Graph
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𝐻 (Hour of Study)

𝐼 (Interest)

𝑊 (Working Strategy)

𝐸 (Exam Grade)

Graph (𝐺)Model (𝑀)

𝑖 = 𝑓𝐼 𝑢𝐼
ℎ = 𝑓𝐻(𝑖, 𝑢𝐻)
𝑤 = 𝑓𝑊(ℎ, 𝑢𝑊)
𝑒 = 𝑓𝐸(𝑖, ℎ, 𝑤, 𝑢𝐸)

𝑈𝐼

𝑈𝐸𝑈𝐻

𝑈𝑊

Assume 𝑈𝐼 and 𝑈𝐻 are correlated.

Observed Variables 𝑽 = {𝐼, 𝐻,𝑊, 𝐸} Hidden Variables 𝑼 = {𝑈𝐼, 𝑈𝐻 , 𝑈𝑊, 𝑈𝐸}



Markovian Model

• A causal model is Markovian if

1. The causal graph is a DAG;

2. All variables in 𝑼 are mutually independent.
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Each node 𝑋 is conditionally independent of its non-descendants 
given its parents 𝑷𝒂𝑋.

Equivalent expression

Known as the local Markov condition (e.g., in Bayesian network), or 
causal Markov condition in the context of causal modeling.



A Markovian Model and Its Graph
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𝐻 (Hour of Study)

𝐼 (Interest)

𝑊 (Working Strategy)

𝐸 (Exam Grade)

Graph (𝐺)Model (𝑀)

𝑖 = 𝑓𝐼 𝑢𝐼
ℎ = 𝑓𝐻(𝑖, 𝑢𝐻)
𝑤 = 𝑓𝑊(ℎ, 𝑢𝑊)
𝑒 = 𝑓𝐸(𝑖, ℎ, 𝑤, 𝑢𝐸)

𝑈𝐼

𝑈𝐸𝑈𝐻

𝑈𝑊

Assume 𝑈𝐼 , 𝑈𝐻 , 𝑈𝑊, 𝑈𝐸 are mutually independent.



Causal Graph of Markovian Model
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𝐻

𝐼

𝑊

𝑃(ℎ|𝑖)

𝑃(𝑖)

𝑃(𝑤|ℎ)

𝑃(𝑒|𝑖, ℎ, 𝑤)

𝐸

Each node is associated with a observable
conditional probability table (CPT) 𝑃(𝑥𝑖|𝒑𝒂𝑖)

𝐻

𝐼

𝑊

𝐸

𝑈𝐼

𝑈𝐸𝑈𝐻

𝑈𝑊



Conditional Independence

• We can read off from the causal graph all the conditional 
independence relationships encoded in the causal model (graph) 
by using a graphical criterion called d-separation.

• Two random variables 𝑋 and 𝑌 are called conditionally 
independent given 𝑍, if for each values of (𝑋, 𝑌, 𝑍), (𝑥, 𝑦, 𝑧),

– 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 𝑍 = 𝑧 = 𝑃 𝑋 = 𝑥 𝑍 = 𝑧 ∙ 𝑃 𝑌 = 𝑦 𝑍 = 𝑧

– Denoted by 𝑋 ⊥ 𝑌|𝑍 or 𝑋 ⊥ 𝑌 𝑍 𝐷
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d-Separation

• Definition of d-separation

• A path 𝑞 is said to be blocked by conditioning on a set 𝒁 if

– 𝑞 contains a chain 𝑖 → 𝑚 → 𝑗 or a fork 𝑖 ← 𝑚 → 𝑗 such that the middle 
node 𝑚 is in 𝒁, or

– 𝑞 contains a collider 𝑖 → 𝑚 ← 𝑗 such that the middle node 𝑚 is not in 𝒁
and such that no descendant of 𝑚 is in 𝒁.

• 𝒁 is said to d-separate 𝑋 and 𝑌 if 𝒁 blocks every path from 𝑋 to 𝑌, 
denoted by 𝑋 ⊥ 𝑌 𝑍 𝐺
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d-Separation
• Example (blocking of paths)

– Path from 𝑋 to 𝑌 is blocked by conditioning on {𝑈} or {𝑍} or both {𝑈, 𝑍}

• Example (unblocking of paths)

– Path from 𝑋 to 𝑌 is blocked by ∅ or {𝑈}

– Unblocked by conditioning on {𝑍} or {𝑊} or both {𝑍,𝑊}
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d-Separation

• Example (d-separation)

• We have following d-separation relations

– 𝑋 ⊥ 𝑌 𝑍 𝐺 , 𝑋 ⊥ 𝑌 𝑈 𝐺 , 𝑋 ⊥ 𝑌 𝑍𝑈 𝐺

– 𝑋 ⊥ 𝑌 𝑍𝑊 𝐺 , 𝑋 ⊥ 𝑌 𝑈𝑊 𝐺 , 𝑋 ⊥ 𝑌 𝑍𝑈𝑊 𝐺

– 𝑋 ⊥ 𝑌 𝑉𝑍𝑈𝑊 𝐺

• However we do NOT have

– 𝑋 ⊥ 𝑌 𝑉𝑍𝑈 𝐺
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Factorization Formula

• In a Markovian model, the joint distribution over all attributes can 
be computed using the factorization formula
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𝑃 𝒗 =ෑ

𝑋∈𝑽

𝑃(𝑥|𝒑𝒂𝑋)

𝐻

𝐼

𝑊

𝐸
𝑃(ℎ|𝑖)

𝑃(𝑖)

𝑃(𝑤|ℎ)

𝑃(𝑒|𝑖, ℎ, 𝑤)

𝑃 𝑖, ℎ, 𝑤, 𝑒 = 𝑃 𝑖 𝑃 ℎ 𝑖 𝑃 𝑤 ℎ 𝑃(𝑒|𝑖, ℎ, 𝑤)

𝑃 𝑒 = 

𝐼,𝐻,𝑊

𝑃 𝑖 𝑃 ℎ 𝑖 𝑃 𝑤 ℎ 𝑃(𝑒|𝑖, ℎ, 𝑤)
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Statistical Inference

• What is the probability of getting grade A if we see that the study 
hour is 1?

• Find 𝑃 𝐸 = ‘𝐴’ 𝐻 = 1
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𝐻 (Hour of Study)

𝐼 (Interest)

𝑊 (Working Strategy)

𝐸 (Exam Grade)



Causal Inference

• What is the probability of getting grade A if we change the study 
hour to 2?

• The above probability does not equal to 𝑃 𝐸 = ‘𝐴’ 𝐻 = 2 , i.e., 
the conditional probability of getting grade A given study hour 
equals to 2.
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Intervention and do-Operator

• The basic operation of manipulating a causal model.

– Simulate the manipulation of the physical mechanisms by some physical 
interventions or hypothetical assumptions.

– Forces some observed variables 𝑿 ∈ 𝑽 to take certain constants 𝒙.

• Mathematically formulated as 𝑑𝑜(𝑿 = 𝒙) or simply 𝑑𝑜(𝒙).

• For an observed variable 𝑌 disjoint with 𝑿, its interventional 
variant under intervention 𝑑𝑜(𝒙) is denoted by 𝑌𝑿←𝒙 or 𝑌𝒙.

• The effect of intervention on all other observed variables 𝒀 = 𝑽\𝑿
is represented by the post-intervention distribution of 𝒀.

– Denoted by 𝑃(𝒀 = 𝒚|𝑑𝑜(𝑿 = 𝒙)) or simply 𝑃(𝒚|𝑑𝑜 𝒙 );

– Or equivalently 𝑃(𝒀𝑿←𝒙 = 𝒚) or simply 𝑃(𝒚𝒙).
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Intervention and do-Operator

• In causal model ℳ, intervention 𝑑𝑜(𝑥∗) is defined as the 
substitution of structural equation 𝑥 = 𝑓𝑋(𝒑𝒂𝑋, 𝒖𝑋) with value 𝑥∗. 
The causal model after performing 𝑑𝑜(𝑥∗) is denoted by ℳ𝑥∗.

• From the point of view of the causal graph, performing 𝑑𝑜(𝑥∗) is 
equivalent to setting the node 𝑋 to value 𝑥∗ and removing all the 
incoming edges in 𝑋.
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ℳ: 𝑥 = 𝑓𝑋(𝒑𝒂𝑋, 𝒖𝑋)
𝑑𝑜(𝑥∗)

ℳ𝑥∗: 𝑥 = 𝑥∗

𝑋

.

.

.

.

.

.

.

.

.

.

.

.

𝑑𝑜(𝑥∗)
𝑥∗

.

.

.

.

.

.

.

.

.

.

.

.



Intervention in Markovian Model

• In the Markovian model, the post-intervention distribution 
𝑃(𝒚|𝑑𝑜(𝒙)) can be calculated from the CPTs, known as the 
truncated factorization:

– where 𝛿𝑿←𝒙 means assigning attributes in 𝑿 involved in the term ahead 
with the corresponding values in 𝒙.

• Specifically, for a single attribute 𝑌 given an intervention on a 
single attribute 𝑋,
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𝑃 𝒚|𝑑𝑜(𝒙) =ෑ

𝑌∈𝒀

𝑃(𝑦|𝑷𝒂𝑌)𝛿𝑿←𝒙

𝑃 𝑦|𝑑𝑜(𝑥) = 

𝑽∖ 𝑋,𝑌
𝑌=𝑦

ෑ

𝑉∈𝑽∖ 𝑋

𝑃(𝑣|𝑷𝒂𝑉)𝛿𝑋←𝑥



Intervention Example

• What is the probability of getting grade A if we change the study 
hour to 2?
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𝐻 (Hour of Study)

𝐼 (Interest)

𝑊 (Working Strategy)

𝐸 (Exam Grade)

Graph (𝐺) Model (𝑀)

𝑖 = 𝑓𝐼 𝑢𝐼
ℎ = 𝑓𝐻(𝑖, 𝑢𝐻)
𝑤 = 𝑓𝑊(ℎ, 𝑢𝑊)
𝑒 = 𝑓𝐸(𝑖, ℎ, 𝑤, 𝑢𝐸)



Intervention Example

• What is the probability of getting grade A if we change the study 
hour to 2, i.e., 𝑑𝑜(𝐻 = 2)?

• Find 𝑃 𝐸 = ‘𝐴’ 𝑑𝑜(𝐻 = 2)
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𝑑𝑜(𝐻 = 2)
(Hour of Study)

𝐼 (Interest)

𝑊 (Working Strategy)

𝐸 (Exam Grade)

Graph (𝐺′) Model (𝑀′)

𝑖 = 𝑓𝐼 𝑢𝐼
ℎ = 2
𝑤 = 𝑓𝑊(ℎ, 𝑢𝑊)
𝑒 = 𝑓𝐸(𝑖, ℎ, 𝑤, 𝑢𝐸)



Intervention Example

98

𝑃 𝐸 = ‘𝐴’|𝑑𝑜(𝐻 = 2) =

𝐼,𝑊

𝑃 𝑖 𝑃 𝑤 𝐻 = 2 𝑃(𝐸 = ‘𝐴’|𝑖, 𝐻 = 2,𝑤)

𝑑𝑜(𝐻 = 2)
(Hour of Study)

𝐼 (Interest)

𝑊 (Working Strategy)

𝐸 (Exam Grade)

Graph (𝐺′) Model (𝑀′)

𝑖 = 𝑓𝐼 𝑢𝐼
ℎ = 2
𝑤 = 𝑓𝑊(ℎ, 𝑢𝑊)
𝑒 = 𝑓𝐸(𝑖, ℎ, 𝑘, 𝑢𝐸)

𝑃 𝑦|𝑑𝑜(𝑥) = 

𝑽∖ 𝑋,𝑌
𝑌=𝑦

ෑ

𝑉∈𝑽∖ 𝑋

𝑃(𝑣|𝑷𝒂𝑉)𝛿𝑋←𝑥
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Total Causal Effect
• The total causal effect of 𝑋 on 𝑌 is given by

• Measures the causal effect transmitted along all causal paths from 𝑋 to 𝑌.
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𝑇𝐸 𝑥2, 𝑥1 = 𝑃 𝑦 𝑑𝑜 𝑥2 − 𝑃 𝑦 𝑑𝑜 𝑥1

𝑇𝐸 𝐻 = 2,𝐻 = 1
= 𝑃 𝐸 = ‘𝐴’ 𝑑𝑜 𝐻 = 2 − 𝑃 𝐸 = ‘𝐴’ 𝑑𝑜 𝐻 = 1

=

𝐼,𝑊

𝑃 𝑖 𝑃 𝑤 𝐻 = 2 𝑃(𝐸 = ‘𝐴’|𝑖, 𝐻 = 2, 𝑤) −

𝐼,𝑊

𝑃 𝑖 𝑃 𝑤 𝐻 = 1 𝑃(𝐸 = ‘𝐴’|𝑖, 𝐻 = 1,𝑤)

𝑑𝑜(𝐻 = 2)

𝐼

𝑊

𝐸

𝑃(𝑖)

𝑃(𝑤 ∣ 𝐻 = 2)

𝑃(𝑒 ∣ 𝑖, 𝐻 = 2,𝑤)

𝑃(𝑒 ∣ 𝑑𝑜(𝐻 = 2))



Path-Specific Effect

• Path-specific effect measures the causal effect transmitted along 
certain paths.

• Given a subset of causal paths 𝜋, the causal effect of 𝑋 on 𝑌
transmitted along 𝜋 is denoted by

– 𝑃 𝑦 𝑑𝑜 𝑥2|𝜋 denotes the distribution of 𝑌 after an intervention of 
changing 𝑋 from 𝑥1 to 𝑥2 with the effect transmitted along 𝜋.
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𝑆𝐸𝜋 𝑥2, 𝑥1 = 𝑃 𝑦 𝑑𝑜 𝑥2|𝜋 − 𝑃 𝑦 𝑑𝑜 𝑥1



Path-Specific Effect
• The causal effect of Study Hour on Exam Grade while keeping the Working 

Strategy unchanged.

• Measures the causal effect of 𝐻 on 𝐸 transmitted along the direct edge (𝜋).
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𝑆𝐸𝜋(𝐻 = 2,𝐻 = 1)
= 𝑃 𝐸 = A 𝑑𝑜 𝐻 = 2|𝜋 − 𝑃 𝐸 = A 𝑑𝑜 𝐻 = 1

=

𝐼,𝑊

𝑃 𝑖 𝑃 𝑤 𝐻 = 2 𝑃(𝐸 = 𝐴|𝑖, 𝐻 = 1,𝑤) −

𝐼,𝑊

𝑃 𝑖 𝑃 𝑤 𝐻 = 1 𝑃(𝐸 = 𝐴|𝑖, 𝐻 = 1,𝑤)

𝜋
𝑑𝑜(𝐻 = 2 ቚ

𝜋
)

𝐼

𝑊

𝐸

𝑃(𝑖)

𝑃(𝑤 ∣ 𝐻 = 1)

𝑃(𝑒 ∣ 𝑖, 𝐻 = 2,𝑤)

𝑃 𝑒 𝑑𝑜 𝐻 = 2|𝜋



Path-Specific Effect
• Identifiability: The path-specific effect can be computed from the 

observational data if and only if the recanting witness criterion is not 
satisfied.

• Recanting witness criterion:

• Refer to (Avin et al., 2005).

103Avin, C., Shpitser, I., Pearl, J.: Identifiability of path-specific effects. In: IJCAI’05 (2005)

𝑋 𝑍 𝑌

𝜋
The “kite” structure 𝑃(𝑦 ∣ 𝑑𝑜(𝑥|𝜋)) is non-

identifiable in this graph
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Counterfactual Analysis

• Counterfactual analysis deals with interventions while we also 
have certain observations, or evidence 𝒆.

• General form of a counterfactual query: “what would we expect 
the value of 𝑌 had 𝑋 been 𝑥, given that we observe 𝑬 = 𝒆?”

𝑃(𝑌𝑋←𝑥 = 𝑦 ∣ 𝑬 = 𝒆) or 𝑃(𝑦𝑥 ∣ 𝒆)

• Example: Whether “gender is male” is the necessary and sufficient 
condition for “being hired”?

– Probability of necessity: 𝑃(𝐻𝐺←𝑓 = 𝑛 ∣ 𝐺 = 𝑚,𝐻 = 𝑦)

– Probability of sufficiency: 𝑃(𝐻𝐺←𝑚 = 𝑦 ∣ 𝐺 = 𝑓,𝐻 = 𝑛)

– Probability of necessity and sufficiency: 𝑃(𝐻𝐺←𝑚 = 𝑦,𝐻𝐺←𝑓 = 𝑛)
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Counterfactual Analysis

• Counterfactual 𝑃(𝑦𝑥 ∣ 𝒆) considers both the actual world ℳ, and 
the counterfactual world ℳ𝑥.

• Two worlds share background before the intervention.

• Example: 𝑃(𝑦𝑥′
′ |𝑥, 𝑦)
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ℳ

𝑥 = 𝑓𝑋 𝑢𝑋
𝑦 = 𝑓𝑌(𝑥, 𝑢𝑌)

ℳ𝑥′

𝑥 = 𝑥′
𝑦 = 𝑓𝑌(𝑥, 𝑢𝑌)

𝑋

𝑌

𝑈𝑌

𝑈𝑋

𝑋 ← 𝑥′

𝑌𝑥′

𝑈𝑌
Shared Background

𝑋

𝑌

𝑈𝑌

𝑈𝑋

𝑋 ← 𝑥′

𝑌𝑥′

Counterfactual graph: depicts 
together the actual world and 
counterfactual worlds invoked 
by the counterfactual query.



Intervention vs. Counterfactual

107

Intervention: 
Questions regarding a single world

Counterfactual:
Questions regarding multiple worlds

Actual World Counterfactual World 

𝑼

Actual World Counterfactual World 

𝑼

𝑃(𝑦𝑥) 𝑃(𝑦𝑥|𝒆)



Counterfactual Analysis

• Principled procedure for computing 𝑃(𝑦𝑥 ∣ 𝒆):

– Abduction: Update 𝑃(𝒖) by the evidence 𝒆 to obtain 𝑃(𝒖|𝒆);

– Action: Perform intervention 𝑑𝑜(𝑥) on causal model ℳ to obtain ℳ𝑥;

– Prediction: Compute the probability of 𝑌 = 𝑦 using ℳ𝑥 and 𝑃(𝒖|𝒆).

• Usually don’t know 𝑃(𝒖).
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𝑃 𝑦𝑥 𝒆 =

𝒖

𝑃 𝑦𝑥 𝒆, 𝒖 𝑃(𝒖 ∣ 𝒆) =

𝒖

𝑃 𝑦𝑥 𝒖 𝑃(𝒖 ∣ 𝒆)



Identifiability of Counterfactual

• May be non-identifiable without complete knowledge of causal 
model (structure equations and 𝑃(𝒖)), even in Markovian model.

• “W-graph”: the simplest non-identifiable counterfactual graph 
structure.
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𝑃(𝑦′𝑥′ ∣ 𝑥, 𝑦) is non-identifiable for any causal model

Shpitser, I., Pearl, J.: Complete identification methods for the causal hierarchy. J. Mach. Learn. Res. 9(Sep), 1941-1979 (2008)

𝑋

𝑌

𝑈𝑌

𝑈𝑋

𝑋 ← 𝑥′

𝑌𝑥′



Identifiability of Counterfactual

• Complete identification algorithm: ID* (Shpitser et al., 2008)

• Possible to be identifiable under certain assumptions.

– Example: In linear Gaussian models, 𝔼[𝑦𝑥 ∣ 𝒆] is identifiable for any 
𝑌, 𝑋, 𝑬, given by (Pearl et al., 2017)

110

𝔼 𝑌𝑥 ∣ 𝒆 = 𝔼 𝑌 ∣ 𝒆 + 𝜏 𝑥 − 𝔼 𝑋 ∣ 𝒆

𝜏 =
𝜕

𝜕𝑥
𝔼 𝑌 ∣ 𝑑𝑜(𝑥)where

Shpitser, I., Pearl, J.: Complete identification methods for the causal hierarchy. J. Mach. Learn. Res. 9(Sep), 1941-
1979 (2008)
Pearl, J.: A linear “microscope” for interventions and counterfactuals. Journal of Causal Inference, 5(1). (2017)
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Main Ideas

• Use causal model and causal graph to capture the causal structure 
of the data.

• Employ do-operator to simulate the intervention of changing an 
individual from protected group to non-protected group and vice 
versa. 

• Adopt path-specific effect technique to identify direct/indirect 
discrimination as the causal effects transmitted along different 
paths in the causal graph.

• Utilize counterfactual to measure discrimination in sub-groups and 
for individuals.
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Causal Model
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Causal Model 𝑀
𝑐 = 𝑓𝐶 𝑝𝑎𝐶 , 𝒖𝐶
𝑥𝑖 = 𝑓𝑖(𝑝𝑎𝑖 , 𝒖𝑖), 𝑖 = 1,⋯ ,𝑚
𝑒 = 𝑓𝐸(𝑝𝑎𝐸 , 𝒖𝐸)

𝑼𝐶 , ⋯ , 𝑼𝑖 , ⋯ , 𝑼𝐸 are mutually independent
(Markovian Assumption)

Observed Variables 

Observed Variables 𝑽 = {𝐶,⋯,𝑋𝑖 ,⋯

𝑿

, 𝐸} Hidden Variables 𝑼

Hidden Variables 

𝑹

Causal Graph 𝐺

𝐶 𝐸

𝑿

𝑃(𝑒|𝑝𝑎𝐸)𝑃(𝑐|𝑝𝑎𝐶)

𝑃(𝑥𝑖|𝑝𝑎𝑖)

…



Motivating Examples (ME1)

• How to deal with indirect 
discrimination due to 
redlining attributes?

• Assume a bank makes loan 
decisions based on the areas 
of residence of the 
applicants.

114



Motivating Examples (ME2)

• How to answer “what if” questions?

– E.g., a female applicant is rejected when applying for a job. What if the 
applicant is a male?

• Refer to as the counterfactual question, since it asks about the 
result NOT in the actual world but in a counterfactual world.

– Results in the counterfactual world cannot be observed in any way.
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Actual World

Alice is a female

Alice is rejected

Counterfactual World

Had Alice been 
a male

?



Motivating Examples (ME3)

• Data discrimination-free vs. Model discrimination-free

• Assumption: a classifier learned from a discrimination-free training 
data will also be discrimination-free.

• Whether and to what extend this assumption holds?
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Historical 
data

Classifier
Test
data

Result

Training

Prediction



Motivating Examples (ME4)

• How to ensure non-discrimination in data release under all 
possible scenarios?

• How to identify meaningful partitions?
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gender female male

admission 
(%)

37% 47%

gender female male

admission 
(%)

43% 43%

major CS EE

test score L H L H

gender female male female male female male female male

admission 
(%)

20% 20% 50% 50% 40% 40% 70% 70%

major CS EE

test score L H L H

gender female male female male female male female male

admission 
(%)

30% 36% 50% 40% 40% 45% 60% 50%

𝑃 𝑒+ 𝑐+ − 𝑃 𝑒+ 𝑐− = 0.1

𝑃 𝑒+ 𝑐+ − 𝑃 𝑒+ 𝑐− = 0

𝑃 𝑒+ 𝑐+, {CS, L} − 𝑃 𝑒+ 𝑐−, {CS, L} = 0

𝑃 𝑒+ 𝑐+, {CS, L} − 𝑃 𝑒+ 𝑐−, CS, L = 0.06



Motivating Examples (ME5)

• How to find paired individuals for situation testing in individual 
discrimination?
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No. gender major score height weight ad.

1 F CS B low low reject

2 M CS B median median admit

3 F CS A low low reject

4 M CS A median median admit

5 F CS C low median reject

6 M CS C median median reject

7 M EE B low low reject

• Which one is closest to 1? 2 or 3 or 7? 
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Direct and Indirect Discrimination

• Direct: explicitly based on the protected attribute 𝐶. 

– E.g., rejecting a qualified female just because of her gender.

• Indirect: based on apparently neutral non-protected attributes but 
still results in unjustified distinctions against individuals from the 
protected group.

– E.g., redlining, where the residential Zip Code of an individual is used for 
making decisions such as granting a loan.

– Redlining attributes 𝑹: non-protected attributes that can cause indirect 
discrimination.
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Direct and Indirect Discrimination Discovery and Removal

• How to deal with indirect discrimination due to redlining 
attributes?

• Modeling direct and indirect discrimination using the causal 
model.

• Quantitative discrimination measure and criterion.

• Algorithm for removing direct and indirect discrimination from a 
dataset.
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Zhang, L., Wu, Y., Wu, X.: A causal framework for discovering and removing direct and indirect discrimination. In: 
IJCAI’17 (2017)
Nabi, R., Shpitser, I.: Fair inference on outcomes. In: AAAI’18 (2018)
Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.: Avoiding discrimination through 
causal reasoning. In: NIPS’17 (2017)



Modeling Discrimination as Path-Specific Effects

• Direct and indirect discrimination can be captured by the causal 
effects of 𝐶 on 𝐸 transmitted along different paths.

– Direct discrimination: causal effect along direct edge from 𝐶 to 𝐸.

• Denoted by 𝑆𝐸𝜋𝑑 𝑐+, 𝑐− where 𝜋𝑑 is the path 𝐶 → 𝐸.

– Indirect discrimination: causal effect along causal paths that pass though 
redlining attributes.

• Denoted by 𝑆𝐸𝜋𝑖 𝑐
+, 𝑐− where 𝜋𝑖 contains all the causal paths from 𝐶 to 𝐸

through redlining attributes 𝑹.
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𝐶 𝐸

𝑿
𝑹

𝜋𝑖

𝜋𝑑



Quantitative Measuring

• 𝜋𝑑-specific effect:

• 𝜋𝑖-specific effect:
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𝑺𝜋𝑖: 𝐶’s children that lie on paths in 𝜋𝑖
ഥ𝑺𝜋𝑖: 𝐶’s children that don’t lie on paths in 𝜋𝑖

𝑸: 𝐸’s parents except 𝐶



Illustrative Example

• A bank makes loan decisions based on the Zip Codes, races, and 
income of the applicants.
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𝐶 (Race)

𝑍 (ZipCode)

𝐼 (Income)

𝐸 (Loan)
𝜋𝑑

𝜋𝑖 direct discrimination

indirect discrimination

“explainable” effect

𝑸

• Race: protected attribute
• Loan: decision
• Zip Code: redlining attribute
• Income: non-protected attribute



Illustrative Example
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𝐶 (Race)

𝑍 (ZipCode)

𝐼 (Income)

𝐸 (Loan)
𝜋𝑑

𝜋𝑖

𝑆𝐸𝜋𝑑(𝑐
+, 𝑐−) =

𝑍,𝐼

𝑃 𝑒+ 𝑐+, 𝑧, 𝑖 − 𝑃 𝑒+ 𝑐−, 𝑧, 𝑖 𝑃 𝑧 𝑐− 𝑃(𝑖|𝑐−)

𝑆𝐸𝜋𝑖(𝑐
+, 𝑐−) =

𝑍,𝐼

𝑃(𝑒+|𝑐−, 𝑧, 𝑖) 𝑃 𝑧 𝑐+ − 𝑃 𝑧 𝑐− 𝑃(𝑖|𝑐−)



Causal Effect vs. Risk Difference

• The total causal effect of 𝐶 (changing from 𝑐− to 𝑐+) on 𝐸 is given 
by

𝑇𝐸 𝑐+, 𝑐− = 𝑃 𝑒+ 𝑑𝑜 𝑐+ − 𝑃 𝑒+ 𝑑𝑜 𝑐−

– transmitted along all causal paths from 𝐶 to 𝐸.

• Connection with the risk difference

𝑇𝐸 𝑐+, 𝑐− = 𝑃 𝑒+|𝑐+ − 𝑃(𝑒+|𝑐−)
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Total Causal Effect vs. Path-Specific Effect

• For any 𝜋𝑑 and 𝜋𝑖, we don’t necessarily have

• If 𝜋𝑖 contains all causal paths from 𝐶 to 𝐸 except 𝜋𝑑, then
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𝑆𝐸𝜋𝑑 𝑐+, 𝑐− + 𝑆𝐸𝜋𝑖 𝑐
+, 𝑐− = 𝑆𝐸𝜋𝑑∪𝜋𝑖(𝑐

+, 𝑐−)

𝑇𝐸 𝑐+, 𝑐− = 𝑆𝐸𝜋𝑑 𝑐+, 𝑐− − 𝑆𝐸𝜋𝑖(𝑐
−, 𝑐+)

“reverse” 𝜋𝑖-specific effect



Discrimination Discovery and Removal Algorithms

• Path-Specific Effect based Discrimination Discovery (PSE-DD) algorithm
– Build causal graph

– Compute 𝑆𝐸𝜋𝑑 and 𝑆𝐸𝜋𝑖

• Path-Specific Effect based Discrimination Removal (PSE-DR) algorithm
– Modify the CPT of 𝐸 so that no discrimination exists.

– Generate a new dataset using the modified graph.

– Minimize the distance of the joint distributions: quadratic programming.
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𝐶

𝑍

𝐼

𝐸
𝑃(𝑐)

𝑃(𝑖|𝑐)

𝑃(𝑧|𝑐)

𝑃(𝑒|𝑐, 𝑧, 𝑖)

𝑃′(𝑒|𝑐, 𝑧, 𝑖)



Empirical Evaluation

• Data: Adult dataset
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protected attribute: sex decision:  income redlining attribute: marital_status

Tool: TETRAD for building the causal graph (using the classic PC algorithm)

𝑆𝐸𝜋𝑑 𝑐+, 𝑐− = 0.025

𝑆𝐸𝜋𝑖 𝑐
+, 𝑐− = 0.175

Threshold = 0.05

Correlation-based 
methods cannot 
correctly identify either 
direct or indirect 
discrimination.



Comparison of Removal Methods

• Evaluated algorithms: 

– PSE-DR (Zhang et al. IJCAI 2017)

– Local massaging (LMSG) and local preferential sampling (LPS) algorithms 
(Žliobaite et al. ICDM 2011)

– Disparate impact removal algorithm (DI) (Feldman et al. KDD 2015)

• Local massaging (LMSG) and local preferential sampling (LPS) 
algorithms still have discrimination.

• Disparate impact removal algorithm (DI) incurs more utility loss. 
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Fair Inference on Outcomes

• Infer a fair distribution 𝑃∗(𝐶, 𝑿, 𝐸) from a sample 𝐷 drawn from 
the original distribution 𝑃 𝐶, 𝑿, 𝐸 .

• Approximate 𝑃∗(𝐶, 𝑿, 𝐸) by solving a constrained maximum 
likelihood problem using path-specific effects

– 𝐷: finite samples drawn from 𝑃(𝐶, 𝑿, 𝐸)

– 𝐿𝐶,𝑿,𝐸(𝐷; 𝜶): likelihood function parameterized by 𝜶

– 𝑔(𝐷): estimator of the path-specific effect
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ෝ𝜶 = argmax𝛼 𝐿𝐶,𝑿,𝐸(𝐷; 𝜶)
Subject to 𝜖𝑙 ≤ 𝑔 𝐷 ≤ 𝜖𝑢

Nabi, R., Shpitser, I.: Fair inference on outcomes. In: AAAI’18 (2018)



Variants of Indirect Discrimination 

• Two definitions of indirect discrimination:
– Unresolved discrimination: if there exits a directed path from 𝐶 to 𝐸 that 

is not blocked by a resolving variable (explainable variable).

– Potential proxy discrimination: if there exists a directed path from 𝐶 to 𝐸
that is blocked by a proxy variable 𝑅 (redlining variable).
• No proxy discrimination if 𝑃 𝐸 𝑑𝑜 𝑅 = 𝑟 = 𝑃(𝐸 ∣ 𝑑𝑜(𝑅 = 𝑟′))

• Pros:
– Use intervention rather than path-specific effect to define indirect 

discrimination, avoid non-identifiability issue.

• Cons:
– Can only qualitatively determine the existence of the discrimination, but 

cannot quantitatively measure the amount of discriminatory effects as 
the path-specific effects do

Kilbertus, N., Rojas-Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., Schölkopf, B.: Avoiding discrimination 
through causal reasoning. In: NIPS’17 (2017)
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Variants of Indirect Discrimination

• Develop procedures for avoiding discrimination in the predictor 
under linearity assumptions about the causal model.

• Example:

𝑃 = 𝛼𝑃𝐴 + 𝑁𝑃
𝑋 = 𝛼𝑋𝐴 + 𝛽𝑃 + 𝑁𝑋
𝑅𝜃 = 𝜆𝑃𝑃 + 𝜆𝑋𝑋

Result: any predictor of the form 
𝑅𝜃 = 𝜆𝑋(𝑋 − 𝛽𝑃)

with free parameter 𝜆𝑋 exhibits no 
proxy discrimination.

𝐸 = 𝛼𝐸𝐴 + 𝑁𝐸
𝑋 = 𝛼𝑋𝐴 + 𝛽𝐸 + 𝑁𝑋
𝑅𝜃 = 𝜆𝐴𝐴 + 𝜆𝑃𝑃 + 𝜆𝑋𝑋

Result: any predictor of the form 
𝑅𝜃 = 𝜆𝑋 𝑋 − 𝛼𝑋𝐴 + 𝜆𝐸𝐸

with free parameters 𝜆𝑋, 𝜆𝐸 exhibits no 
unresolved discrimination.

133



Outline

• Part I: Introduction

• Part II: Correlation based Anti-Discrimination Learning

• Part III: Causal Modeling Background

• Part IV: Causal Modeling-Based Anti-Discrimination Learning

– Direct and Indirect Discrimination

– Counterfactual Fairness

– Data discrimination vs. model discrimination

– Other Works

• Part V: Challenges and Directions for Future Research

134



Counterfactual Fairness

• Protected attribute:           𝐶 𝐴

• Non-protected attribute:  𝑿 𝑿

• Decision attribute:             𝐸 𝑌

• Predictor:                            𝐸 𝑌 = 𝑓(𝒙, 𝑎)
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Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: NIPS’17 (2017)
Russell, C., Kusner, M.J., Loftus, J., Silva, R.: When worlds collide: integrating different counterfactual assumptions in 
fairness. In: NIPS’17 (2017)



Counterfactual Fairness

• (Russell et al., 2017) For any predictor 𝑌 = 𝑓(𝒙, 𝑎):

• Also works for a dataset:
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Counterfactual fair if 𝑓 𝒙𝐴←𝑎, 𝑎 = 𝑓 𝒙𝐴←𝑎′, 𝑎′ for any input with 𝑿 = 𝒙 and 𝐴 = 𝑎;

(𝜖, 𝛿)-approximate counterfactual fair if
𝑃 𝑓 𝒙𝐴←𝑎, 𝑎 − 𝑓 𝒙𝐴←𝑎′, 𝑎′ ≤ 𝜖 ∣ 𝒙, 𝑎 ≥ 1 − 𝛿

(𝜖, 0)-approximate counterfactual fair if 𝑓 𝒙𝐴←𝑎, 𝑎 − 𝑓 𝒙𝐴←𝑎′, 𝑎′ ≤ 𝜖 for any 
input with 𝑿 = 𝒙 and 𝐴 = 𝑎;

Russell, C., Kusner, M.J., Loftus, J., Silva, R.: When worlds collide: integrating different counterfactual 
assumptions in fairness. In: NIPS’17 (2017)

Counterfactual fair if for any context 𝑼 = 𝒖, 𝑿 = 𝒙 and 𝐴 = 𝑎,
𝑃 𝑌𝑎 𝒖 = 𝑦 𝑿 = 𝒙, 𝐴 = 𝑎 = 𝑃 𝑌𝑎′ 𝒖 = 𝑦 𝑿 = 𝒙, 𝐴 = 𝑎 ,

for all 𝑦 and 𝑎’.



Toy Examples

The Red Car

• 𝐴 is independent of 𝑌;

• 𝑌 = 𝑓(𝑥) does not use 𝐴 but is not 
counterfactually fair;

• 𝑌 = 𝑓(𝑥, 𝑎) is counterfactual fair if 
𝑓(⋅) is a regression.
– Equivalent to regressing on 𝑈.
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High Crime Regions

• Locations 𝑋 with more police 
resources have larger 𝑌;

• Not because different races are any 
more or less likely to break the law;

• Algorithms enforcing EO will not 
remedy unfairness.

Race 

Red Car Accident 

Unknown Race 

Residential 
Location

Socioeconomic and 
Policing Factors

Criminal Arrest 
Record



Constructing Counterfactually Fair Predictors

• Lemma: 𝑌 will be counterfactually fair if it is a function of non-
descendants of 𝐴.

• Three levels of conditions for counterfactually fair predictors:

1. 𝑌 is built using only non-descendants of 𝐴;

2. 𝑌 is built on latent variables 𝑼 whose distribution, i.e., 𝑃(𝒖|𝑥, 𝑎), is 
known based on explicit domain knowledge;

3. 𝑌 is built on latent variables 𝑼 where the causal model is postulated, 
e.g., 𝑥𝑖 = 𝑓𝑖 𝑝𝑎𝑖 + 𝒖𝑖 with given types of function 𝑓𝑖(⋅).
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• Dataset: 21,790 law students with their race, sex, entrance exam 
scores (LSAT), grade-point average (GPA) prior to law school, and 
first year average grade (FYA).

• Counterfactual unfair predictors:

– Full model: which is built on all attributes;

– Unaware model: which is built on attributes other than race and sex;

• Counterfactual fair predictors:

– Fair K: which is built on K, a postulated hidden variable whose distribution 
is estimated from data;

– Fair Add: which assumes an additive causal model, and is built on the 
error terms of the additive model.

Illustrative Example
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Protected attribute

Label



Illustrative Example

• Counterfactual fairness:

– Both counterfactual fair predictors can achieve fairness;

– while counterfactual unfair predictors cannot.

• Accuracy
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Counterfactual Direct/Indirect Discrimination

• Protected attribute:            𝐶 𝑋

• Non-protected attribute:   𝑿 𝑍,𝑊

• Decision attribute:              𝐸 𝑌

• Effect of Treatment On the Treated (ETT): Effect of intervention 
𝑋 = 𝑥1 on 𝑌 = 𝑦 conditioned on 𝑋 = 𝑥0

141Zhang, J., Bareinboim, E.: Fairness in decision-making – the causal explanation formula. In: AAAI’18 (2018)

𝐸𝑇𝑇𝑥0,𝑥1 𝑦 = 𝑃 𝑦𝑥1 𝑥0 − 𝑃(𝑦 ∣ 𝑥0)

The probability of 𝑌 would be 𝑦 had 𝑋 been 𝑥1 (counterfactually), 
given that in the actual world 𝑋 = 𝑥0.

confounder

mediator



Counterfactual Direct/Indirect Discrimination

• Define discrimination as the direct/indirect ETT.

• Discrimination measures:

– Counterfactual direct effect (Ctf-DE): Direct effect of intervention 𝑋 = 𝑥1
on 𝑌 (with baseline 𝑥0) conditioned on 𝑋 = 𝑥
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𝐷𝐸𝑥0,𝑥1 𝑦 𝑥 = 𝑃 𝑦𝑥1,𝑊𝑥0
𝑥 − 𝑃(𝑦𝑥0 ∣ 𝑥)

The value of 𝑊 which would 
have attained had 𝑋 been 𝑥0

The value of 𝑌 would be had 𝑋 been 𝑥1, while 𝑊 is 
kept at the same value that it would have attained 
had 𝑋 been 𝑥0, given that 𝑋 was actually equal to 𝑥



Counterfactual Direct/Indirect Discrimination

• Discrimination measures:

– Counterfactual direct effect (Ctf-DE):

– Counterfactual indirect effect (Ctf-IE): Indirect effect of intervention 𝑋 =
𝑥1 on 𝑌 (with baseline 𝑥0) conditioned on 𝑋 = 𝑥
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𝐷𝐸𝑥0,𝑥1 𝑦 𝑥 = 𝑃 𝑦𝑥1,𝑊𝑥0
𝑥 − 𝑃(𝑦𝑥0 ∣ 𝑥)

𝐼𝐸𝑥0,𝑥1 𝑦 𝑥 = 𝑃 𝑦𝑥0,𝑊𝑥1
𝑥 − 𝑃(𝑦𝑥0 ∣ 𝑥)

The value of 𝑊 which would 
have attained had 𝑋 been 𝑥1

The value of 𝑌 would be had 𝑋 been 𝑥0, while 
changing 𝑊 to whatever level it would have obtained 
had 𝑋 been 𝑥1, given that 𝑋 was actually equal to 𝑥



Counterfactual Direct/Indirect Discrimination

• Discrimination measures:

– Counterfactual direct effect (Ctf-DE):

– Counterfactual indirect effect (Ctf-IE):

– Counterfactual spurious effect (Ctf-DE) (NOT discrimination): Capture 
spurious associations between 𝑋 and 𝑌
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𝐷𝐸𝑥0,𝑥1 𝑦 𝑥 = 𝑃 𝑦𝑥1,𝑊𝑥0
𝑥 − 𝑃(𝑦𝑥0 ∣ 𝑥)

𝐼𝐸𝑥0,𝑥1 𝑦 𝑥 = 𝑃 𝑦𝑥0,𝑊𝑥1
𝑥 − 𝑃(𝑦𝑥0 ∣ 𝑥)

S𝐸𝑥0,𝑥1(𝑦) = 𝑃 𝑦𝑥0 𝑥1 − 𝑃(𝑦 ∣ 𝑥0)

The value of 𝑌 would be had 𝑋 been 𝑥0, 
given that  𝑋 was actually equal to 𝑥1

The probability difference in 𝑌 = 𝑦 had 𝑋 been 𝑥0 for the 
individuals that would naturally choose 𝑋 to be 𝑥0 versus 𝑥1.



Graphical Properties

1. If 𝑋 has no direct causal path connecting 𝑌 in the causal graph, 
then 𝐷𝐸𝑥0,𝑥1(𝑦|𝑥) = 0, for any 𝑥, 𝑦, 𝑥0 ≠ 𝑥1.

2. If 𝑋 has no indirect causal path connecting 𝑌 in the causal graph, 
then 𝐼𝐸𝑥0,𝑥1(𝑦|𝑥) = 0, for any 𝑦, 𝑥, 𝑥0 ≠ 𝑥1.

3. if 𝑋 has no back-door path connecting 𝑌 in the causal graph, then 
𝑆𝐸𝑥0,𝑥1(𝑦) = 0, for any 𝑦, 𝑥0 ≠ 𝑥1.
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Relationship

• Show relationships among counterfactual effects

• Summary of different discrimination measures
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Estimating from Observational Data

• Expressions under the “standard model”

𝐷𝐸𝑥0,𝑥1(𝑦|𝑥), 𝐼𝐸𝑥0,𝑥1(𝑦|𝑥), 𝑆𝐸𝑥0,𝑥1(𝑦) are given by
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Outline

• Part I: Introduction

• Part II: Correlation based Anti-Discrimination Learning

• Part III: Causal Modeling Background

• Part IV: Causal Modeling-Based Anti-Discrimination Learning

– Direct and Indirect Discrimination

– Counterfactual Fairness

– Data discrimination vs. model discrimination

– Other Works

• Part V: Challenges and Directions for Future Research
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Achieving Non-Discrimination in Prediction

• Will a classifier learned from a discrimination-free training data 
also be discrimination-free?

• The gap between the discrimination-free training data and the 
discrimination-free classifier

• Mathematically bound the discrimination in predictions in terms of 
the training data and the classifier performance.

149
Zhang, L., Wu, Y., Wu, X.: Achieving non-discrimination in prediction. In: IJCAI’18 (2018)



Causal Modeling-Based Anti-Discrimination Framework
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Historical 
data 𝒟

Causal 
Model ℳ

Generate

Classifier 
ℎ(𝐶, 𝒁)

Train Predict Predicted 
data 𝒟ℎ

Generate

Causal 
Model ℳℎ

Population

𝐶, 𝒁, 𝐿

=

𝐶, 𝒁, 𝐿 𝐶, 𝒁, ℎ(𝐶, 𝒁)

Causal Model ℳ

𝑐 = 𝑓𝐶(𝒑𝒂𝐶 , 𝒖𝐶)

∀𝑧𝑖 ∈ 𝒁, 𝑧𝑖= 𝑓𝑖 𝒑𝒂𝑖 , 𝒖𝑖
𝑙 = 𝑓𝐿(𝒑𝒂𝐿, 𝒖𝐿)

Causal Model ℳℎ

𝑐 = 𝑓𝐶(𝒑𝒂𝐶 , 𝒖𝐶)

∀𝑧𝑖 ∈ 𝒁, 𝑧𝑖= 𝑓𝑖 𝒑𝒂𝑖 , 𝒖𝑖
𝑙 = ℎ(𝑐, 𝒛)

C: protected attr
Z: non-protected attrs
L: decision attr



Measure of Discrimination
• Whether the decision of an individual would be different had the 

individual been of a different protected/non-protected group?

• For each individual 𝒖, his/her label under intervention 𝑑𝑜(𝑐+): 𝐿𝑐+(𝒖)

• Expectation of differences in labels under 𝑑𝑜(𝑐+) and 𝑑𝑜(𝑐−): 
𝔼[𝐿𝑐+ 𝒖 − 𝐿𝑐− 𝒖 ]

• Derived causal measures of discrimination:

– 𝐷𝐸ℳ = 𝔼 𝐿𝑐+ 𝒖 − 𝐿𝑐− 𝒖 = 𝑃 𝑙+ 𝑐+ − 𝑃(𝑙+|𝑐−)

– 𝐷𝐸𝒟 = 𝑃 𝑙+ 𝑐+ − 𝑃(𝑙+|𝑐−)

– 𝐷𝐸ℳℎ
= 𝔼 ℎ 𝑐+, 𝒁𝑐+ 𝒖 − ℎ 𝑐−, 𝒁𝑐− 𝒖 = 𝑃 ሚ𝑙+ 𝑐+ − 𝑃(ሚ𝑙+|𝑐−)

– 𝐷𝐸𝒟ℎ =
𝑃 ሚ𝑙+ 𝑐+ − 𝑃 ሚ𝑙+ 𝑐−

=

𝒛

𝕀 ℎ 𝑐+,𝒛 =𝑙+
𝑃(𝒛|𝑐+) −

𝒛

𝕀 ℎ 𝑐−,𝒛 =𝑙+
𝑃 𝒛 𝑐−

151

Coincident with risk difference



Problem Definition

• Problem 1 (Discover Discrimination in Prediction). Given a causal 
measure of discrimination defined on ℳ, i.e., 𝐷𝐸ℳ , a sample 
dataset 𝒟 and a classifier ℎ trained on 𝒟, compute analytic 
approximation to the true discrimination in prediction, i.e., 𝐷𝐸ℳℎ

.

• Problem 2 (Remove Discrimination in Prediction). Given 𝐷𝐸ℳ , 
𝒟and ℎ, tweak 𝒟 and/or ℎ in order to make 𝐷𝐸ℳℎ

be bounded by 

a user-defined threshold 𝜏.
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Discover (Bound) Discrimination in Prediction
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𝑃 𝐷𝐸ℳ − 𝐷𝐸𝒟 ≤ 𝑡 > 1 − 4𝑒−
𝑛+𝑛−

𝑛
𝑡2

The probability of the difference between 𝐷𝐸ℳ and 𝐷𝐸𝒟 no larger 
than 𝑡 is bounded by



Bound Discrimination in Prediction
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𝐷𝐸𝒟ℎ

𝐷𝐸ℳℎ
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𝑃 𝐷𝐸ℳℎ
− 𝐷𝐸𝒟ℎ ≤ 𝑡 > 1 − 𝛿(𝑡)

The probability of the difference between 𝐷𝐸ℳℎ
and 𝐷𝐸𝒟ℎ no larger 

than 𝑡 is bounded by

where 𝛿 𝑡 =
4 ℋ 2𝑒−

𝑛+𝑛−

𝑛
𝑡2

4
2𝑒𝑛+ 𝑑 + 2𝑒𝑛− 𝑑

𝑑𝑑
𝑒−

𝑛+𝑛−

𝑛
𝑡2

if ℋ is finite
if ℋ is infinite



Bound Discrimination in Prediction
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connection
𝐷𝐸𝒟ℎ

𝜀ℎ

𝐷𝐸𝒟ℎ − 𝐷𝐸𝒟 = 𝜀ℎ,𝒟

where 𝜀ℎ,𝒟 = 𝜀1
+ − 𝜀2

+ − ( 𝜀1
− − 𝜀2

− )

% of false positives on data with 𝑐+ and 𝑐− % of false negatives on data with 𝑐+ and 𝑐−



Bound Discrimination in Prediction
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Remove Discrimination in Prediction

• Removing discrimination from training data ONLY is NOT enough as 
discrimination in prediction depends on 𝐷𝐸𝒟 + 𝜀ℎ,𝒟.

• Two-phase framework for non-discrimination in prediction:

1. (Data modification) Modify training dataset 𝒟 to obtain a modified 
dataset 𝒟∗ such that 𝐷𝐸𝒟∗ ≤ 𝜏;

2. (Classifier tweaking) Train a classifier ℎ∗ on 𝒟∗ (and tweak it) such that 

𝐷𝐸𝒟∗ + 𝜀ℎ∗,𝒟∗ ≤ 𝜏.

• What methods can be employed in the framework?

– Only label-modifying data modification can achieve the guarantee.

– If any attribute other than the label is modified, the testing data and the 
training data are from different distributions, and hence no guarantee.
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• Part II: Correlation based Anti-Discrimination Learning
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– Other Works
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Suppes-Bayes Causal Network (SBCN)

• Each node represents an assignment attribute value

• Each arc 𝑣 → 𝑢 represents the existence of a relation satisfying 
Suppes’ constraints

– Let 𝑣 denote cause, 𝑢 denote effect

– Temporal priority: 𝑡𝑣 < 𝑡𝑢
– Probability raising: 𝑃 𝑢 𝑣 > 𝑃(𝑢|¬𝑣)

• Each arc is labeled with a positive weight 𝑝(𝑢|𝑣) – 𝑝(𝑢|¬𝑣)
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Bonchi, F., Hajian, S., Mishra, B., Ramazzotti, D.: Exposing the probabilistic causal structure of discrimination. Int. J. Data 
Sci. Anal. 3(1), 1–21 (2017)



A SBCN Example
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Discrimination Score using SBCN 
• Discrimination score

– 𝑑𝑠− 𝑣 =
𝑟𝑤𝑣→𝑒−

𝑛

– 𝑣 is a node of SBCN (e.g. female), 𝑒− is the node of negative decision, 𝑟𝑤𝑣−>𝑒−

is the number of random walks from 𝑣 to 𝑒− that earlier than 𝑒+, 𝑛 is the 
number of random walks from 𝑣 to 𝑒+ and from 𝑣 to 𝑒−.

• Generalized score for individual and subgroup discrimination

– 𝑔𝑑𝑠− 𝑣1, … , 𝑣𝑛 =
𝑝𝑝𝑟 𝑒− 𝑣1, … 𝑣𝑛

𝑝𝑝𝑟 𝑒− 𝑣1, … 𝑣𝑛 +𝑝𝑝𝑟 𝑒+ 𝑣1, … 𝑣𝑛
– 𝑝𝑝𝑟 𝑒− 𝑣1, … 𝑣𝑛 is output of personalized PageRank.

• Limitations
– The constructor of SBCN is impractical with large attribute-value pairs.

– It is unclear how the number of random walks is related to meaningful 
discrimination metric.
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Achieving Non-Discrimination in Data Release

• An organization/data-owner aims to achieve a non-discrimination 
guarantee against all possible lawsuits.

• Terminology:
– Partition: a set of attributes are used to partition data

– Group: a set of individuals who have the same values in terms of one 
partition

• Risk difference for group discrimination

– ∆𝑃|𝒔= 𝑃 𝑒+ 𝑐+, 𝒔 − 𝑃 𝑒+ 𝑐−, 𝒔

– 𝜏: an user-defined threshold for discrimination detection depending on 
laws and regulations (e.g., 0.05).

– If ∆𝑃|𝒔< 𝜏 holds across all possible partitions and their values s, then no 
discrimination.

162Zhang, L., Wu, Y., Wu, X.: Achieving non-discrimination in data release. In: SIGKDD’17 (2017)



Achieving Non-Discrimination in Data Release

• Achieve a non-discrimination guarantee
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against all possible lawsuits for all meaningful subgroups

gender Female Male

admission 
(%)

43% 43%

major CS EE

gender Female Male Female Male

admission 
(%)

38% 38% 47% 47%

major CS EE

test score Low High Low High

gender Female Male Female Male Female Male Female Male

admission 
(%)

30% 36% 50% 40% 40% 45% 60% 50%

No. …

gender …

major …

score …

height …

weight …

admission …

partition



Achieving Non-Discrimination in Data Release

• A node set 𝑩 forms a meaningful partition:

– 𝑩 d-separates 𝐶 and 𝐸 in the graph (deleting 𝐶 → 𝐸)

– None of 𝐸’s children is in 𝑩

– 𝑩 is called a block set

• Ensure ∆𝑃|𝒃 < 𝜏 for each 𝒃 of each 𝑩.

– ∆𝑃|𝒃 = 𝑃 𝑒+ 𝑐+, 𝒃 − 𝑃 𝑒+ 𝑐−, 𝒃

• Let 𝑸 = 𝑃𝑎(𝐸)\{𝐶}, if ∆𝑃|𝒒 < 𝜏 holds, it is guaranteed ∆𝑃|𝒃 <

𝜏 holds.
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Discrimination Removal

• Modifying the causal graph (MGraph)

– Modify the CPT of 𝐸 so that non-discrimination is achieved over its 
distribution and graph.

– Generate a new dataset using the modified graph.

– Minimize the distance of the joint distributions: quadratic programming.

• Modifying the dataset (MData)

– If ∆𝑃|𝒒≥ 𝜏, randomly select a number of individuals from the {𝑐−𝑒−}

group and change decision from 𝑒− to 𝑒+.

– If ∆𝑃|𝒒≤ −𝜏, do the similar modification.

– As a result, ensure that |∆𝑃|𝒒| ≤ 𝜏 holds for each q.
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Empirical Evaluation
• Data: Adult and Dutch Census
• Evaluated algorithms: 

– MGraph, MData (Zhang et al. SIGKDD 2017)
– Local massaging (LM) and local preferential sampling (LPS) algorithms (Žliobaite et al. ICDM 2011)
– Disparate impact removal algorithm (DI) (Feldman et al. SIGKDD 2015)

• Result
– MGraph and MData totally remove discrimination over all meaningful subgroups. 
– LM, LPS, DI still have discriminated subgroups.
– MGraph and MData well-preserve data utility. 
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Individual Discrimination Discovery

• Individual-level discrimination discovery deals with the 
discrimination that happens to one particular individual.

• Situation testing-based approach: 

– Select pairs of similar individuals to the target from both the protected 
(𝑐−) group and the unprotected (𝑐+) group.

– Check whether difference is significant between the decisions of the 
selected protected and non-protected individuals.

• How to find similar individuals for situation testing?
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Zhang, L., Wu, Y., Wu, X.: Situation testing-based discrimination discovery: a causal inference approach. In: IJCAI’16 
(2016)



Individual Discrimination Discovery

• Situation testing: find similar individuals for the target.
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No. gender major score height weight ad.

1 F CS B low low reject

2 M CS B median median admit

3 F CS A low low reject

4 M CS A median median admit

5 F CS C low median reject

6 M CS C median median reject

7 M EE B low low reject

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑸



Individual Discrimination Discovery
• The distance function between two individuals 𝑡 and 𝑡′ is defined as:

𝑑 𝑡, 𝑡′ = 

𝑘=1

|𝑸|

|𝐶𝐸(𝑞𝑘 , 𝑞𝑘
′ ) ∙ 𝑉𝐷(𝑞𝑘 , 𝑞𝑘

′ )|

• 𝐶𝐸(𝑞𝑘 , 𝑞’𝑘 ) measures the causal effect of each attribute 𝑄𝑘 ∈ 𝑸 on 
the decision when the value of 𝑄𝑘 changes from 𝑞𝑘 to 𝑞𝑘

′ . Using the do-
operator, it is computed with:

𝐶𝐸 𝑞𝑘 , 𝑞𝑘
′ = 𝑃 𝑒+|𝑑𝑜(𝒒 ) − 𝑃 𝑒+|𝑑𝑜(𝑞𝑘

′ , 𝒒\ 𝑞𝑘 )

• 𝑉𝐷(𝑞𝑘 , 𝑞𝑘
′ ) measures the difference between two values 𝑞𝑘 and 𝑞𝑘

′ of 
each attribute 𝑄𝑘 ∈ 𝑸. 

𝑉𝐷 𝑞𝑘, 𝑞𝑘
′ = ൝

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑞𝑘 , 𝑞𝑘
′ if 𝑄𝑘 is ordinal/interval

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑞𝑘 , 𝑞𝑘
′ if 𝑄𝑘 is categorical
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Empirical Evaluation
• Data: Dutch Census of 2001
• Comparison of Different Methods

– CBN-based situation testing (CBN-DD) (Zhang et al. IJCAI 2017)
– KNN-based situation testing (KNN-DD) (Luong et al. SIGKDD 2011)

• Result: 
– KNN-DD and CBN-DD are significantly different.
– CBN-DD outperforms KNN-DD over the synthetic data.

Accuracy
• Clean the dataset by “shuffling” gender
• Manually change decision from 𝑒+ to 

𝑒− for 100 female individuals. 
• Use these individuals and another 

random 100 individuals without 
discrimination as the targets.
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Summary

171

Preliminary
Causal Modelling
Path-specific
Counterfactual 



Outline

• Part I: Introduction

• Part II: Correlation based Anti-Discrimination Learning

• Part III: Causal Modeling Background

• Part IV: Causal Modeling-Based Anti-Discrimination Learning

– Direct and Indirect Discrimination

– Counterfactual Fairness

– Data discrimination vs. model discrimination

– Other Works

• Part V: Challenges and Directions for Future Research

172



Challenges

• Dealing with non-identifiability of path-specific effects

• Causal modeling implementation for mixed-type variables

• Relaxing Markovian assumption

• Dealing with multiple causal models

• Group/Individual-level indirect discrimination
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Identifiability

• Identifiability: The path-specific effect can be computed from the 
observational data if and only if the recanting witness criterion is 
NOT satisfied.

• Recanting witness criterion:

174

𝐶 𝑊 𝐸

𝜋

The “kite” structure



Unidentifiable Situation

• When the recanting witness criterion is satisfied, indirect 
discrimination 𝑆𝐸𝜋𝑖 cannot be computed from observational data.

• Example:

175

The “kite” structure

𝜋𝑖 = 𝐶, 𝐴2, 𝐸 , (𝐶,𝑊, 𝐴1, 𝐸)



• Principled approaches for dealing with non-identifiable path-
specific effects (Nabi et al., 2018)

– Measure hidden variables 𝑼 or obtain reliable proxies for them, if 
possible.

– Consider a path-specific effect that is identifiable, which includes the 
paths of interest and some other paths.

• The path-specific effect which includes more paths should be an upper bound 
of the path-specific effect of interest.

– Derive theoretical bounds for the non-identifiable path-specific effect.

• Zhang et al. TKDE18

• Some tight bounds may be possible. Tian & Pearl 2000.

Dealing with Unidentifiable Situation

176

Zhang, L., Wu, Y., Wu, X.: Causal modeling-based discrimination discovery and removal: Criteria, bounds, and 
algorithms. In: TKDE, under review (2018)
Tian, J., Pearl, J.: Probabilities of causation: Bounds and identification. In: UAI’00 (2000)



Bounding 𝜋𝑖-specific Effect
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𝑃 𝑒+ 𝑑𝑜 𝑐+|𝜋𝑖 = 

𝐴1,𝐴2,𝐵,𝑊
+,𝑊−

𝑃 𝑒+|𝑐−, 𝑎1, 𝑎2, 𝑏 𝑃 𝑎1|𝑤
+ 𝑃 𝑎2 𝑐

+ 𝑃 𝑏 𝑤− 𝑃(𝑤𝑐+
+ , 𝑤𝑐−

− )

• Counterfactual: 𝑊 would be 𝑤+ if 𝐶 = 𝑐+ and 𝑊 would be 𝑤− if 𝐶 = 𝑐−.
• Generally unidentifiable from observational data or even controlled experiment.
• Bounded by condition



𝑤−

𝑃 𝑤𝑐+
+ , 𝑤𝑐−

− = 𝑃(𝑤𝑐+
+ )

Witness Node

The “kite” structure

Zhang, L., Wu, Y., Wu, X.: Causal modeling-
based discrimination discovery and 
removal: Criteria, bounds, and algorithms. 
In: TKDE, under review (2018)



Bounding 𝜋𝑖-specific Effect

• 𝑆𝐸𝜋𝑖 𝑐
+, 𝑐− = 𝑃 𝑒+ 𝑑𝑜 𝑐+|𝜋𝑖 − 𝑃 𝑒+ 𝑑𝑜 𝑐−

• Upper bound of 𝑃 𝑒+ 𝑑𝑜 𝑐+|𝜋𝑖

• Lower bound

• Notations:

– 𝑾: witness nodes

– 𝑨1: nodes in 𝜋𝑖 not in 𝑾 but involved in “kite pattern”

– 𝑨2: nodes in 𝜋𝑖 not in 𝑾 and not involved in “kite pattern”

– 𝑩: nodes not in 𝜋𝑖 178



Using Bounds for Discrimination Discovery and Removal

• Utilize lower and upper bounds for identifying indirect 
discrimination.

– If 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, non-discrimination for certain.

– If 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, discrimination for certain.

– If 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑, uncertain.

• For removal, replace 𝑆𝐸𝜋𝑖(𝑐
+, 𝑐−) with its upper bound in 

constraints of quadratic programming.

– The solution of the “simple” method is a feasible solution of the above 
quadratic programming problem.
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Empirical Evaluation
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protected attribute: sex decision:  income redlining attribute: edu

The “kite” structure



Challenges

• Dealing with non-identifiability of path-specific effects

• Causal modeling implementation for mixed-type variables

• Relaxing Markovian assumption

• Dealing with multiple causal models

• Group/Individual-level Indirect Discrimination
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Causal Modeling for Mixed-type Variables

• Most existing works construct causal graph for categorical 
variables.

• For mixed-type variables, one option is Conditional Linear 
Gaussian (CLG) Bayesian network

• Limitation: discrete variables can only have discrete parents.
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Pr 𝑥 𝑌 ∼ 𝑁(𝜇𝑌 , 𝜎𝑌
2)

𝑍|𝑥, 𝑦 ∼ 𝑁(𝑎 𝑥 + 𝑏 𝑥 𝑦, 𝑐(𝑥))

continuous variable: CLG distribution

X Y

ZParameters: 𝑎 ⋅ , 𝑏 ⋅ , 𝑐 ⋅

𝜇𝑍|𝑥,𝑦 𝜎𝑍|𝑥,𝑦
2

discrete variable: CPT

Madsen, A.L.: Belief update in CLG Bayesian networks with lazy propagation. Int. J. Approx. Reason. 49(2),503-521 
(2008)



Causal Modeling for Mixed-type Variables

• (Kocaoglu et al. 2018) uses neural network architecture to represent 
causal graph.
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𝑋 𝑌

𝑁𝑋

𝑍

𝑁𝑍 𝑁𝑌

Neural network architecture 
that represents:

Kocaoglu, M., Snyder, C., Dimakis, A.G., Vishwanath, S.: CausalGAN: Learning causal implicit generative models 
with adversarial training. In: ICLR’18 (2018)



Challenges

• Dealing with non-identifiability of path-specific effects

• Causal modeling implementation for mixed-type variables

• Relaxing Markovian assumption

• Dealing with multiple causal models

• Group/Individual-level indirect discrimination
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Relaxing Markovian Assumption

• A causal model is Markovian if

1. The causal graph is acyclic;

2. All variables in 𝑼 are mutually independent.
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Relaxing Markovian Assumption

• A causal model is semi-Markovian if

1. The causal graph is acyclic;

2. All variables in 𝑼 are NOT mutually independent.

• Hidden confounders are known to exist in the system.

• The causal graph of the semi-Markovian model is commonly 
represented by the acyclic directed mixed graph (ADMG).

– The bidirected arrow ⟷ implies the presence of unobserved 
confounder(s) between variables.
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Relaxing Markovian Assumption
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𝐶

𝑍

𝐼

𝐸

𝑈𝑍

𝑈𝐸𝑈𝐶

𝑈𝐼

Markovian model 𝐶

𝑍

𝐼

𝐸

𝑈𝑍

𝑈𝐸𝑈𝐶

𝑈𝐼
𝐶

𝑍

𝐼

𝐸

Semi-Markovian model

Directed Acyclic Graph (DAG)

Acyclic Directed Mixed Graph (ADMG)

𝐶

𝑍

𝐼

𝐸



Intervention in Semi-Markovian Model

• Intervention also applies to semi-Markovian model.

• Unlike in the Markovian model, do-operations may not be able to 
be calculated from observational data (i.e., identifiable) due to 
unobserved confounders.

• “Bow-arc graph”: the simplest non-identifiable graph structure.
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𝑋 𝑌

𝑃(𝑦 ∣ 𝑑𝑜(𝑥)) is non-identifiable in this graph

𝑋 𝑌

𝑈



Intervention in Semi-Markovian Model

• Graphical criterion of identification:

– Sufficient condition: back-door criterion

– Sufficient condition: front-door criterion

– Complete criterion: hedge criterion (Shpitser et al., 2008)

• Complete identification algorithm: ID (Shpitser et al., 2008)
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Shpitser, I., Pearl, J.: Complete identification methods for the causal hierarchy. J. Mach. Learn. Res. 9(Sep), 
1941-1979 (2008)

𝑃(𝑦 ∣ 𝑑𝑜(𝑥)) is identifiable if exists a set 
of observed variables 𝒁 that blocks all 
back-door paths from 𝑋 to 𝑌𝑋 𝑌

back-door path

……

𝑍

𝑃(𝑦 ∣ 𝑑𝑜(𝑥)) is identifiable if exists a set of observed 
variables 𝒁 such that:
• 𝒁 blocks all causal paths from 𝑋 to 𝑌;
• There is no back-door path from 𝑋 to 𝒁;
• All back-door paths from 𝒁 to 𝑌 are blocked by 𝑋.

𝑋 𝑌

𝑍
……



Relaxing Markovian Assumption

• ID algorithm for identification of interventions.

• ID* algorithm for identification of counterfactuals.

• Generalize the d-separation to m-separation.

• For path-specific effect, generalize recanting witness criterion to 
recanting district criterion.

190

Any anti-discrimination method designed for semi-
Markovian models must be adapted to the differences in 
the causal inference techniques.



Challenges

• Dealing with non-identifiability of path-specific effects

• Causal modeling implementation for mixed-type variables

• Relaxing Markovian assumption

• Dealing with multiple causal models

• Group/Individual-level indirect discrimination
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Fairness under Causal Model Aggregation

• Sometimes there may be multiple plausible causal models.

– Provided by different experts.

– Learned from data as the Markov equivalent class.

• Make predictions that are approximately fair with respect to 
multiple possible causal models.

• Potential solutions:

– Opinion pooling

– Aggregated fairness constraints

Russell, C., Kusner, M.J., Loftus, J., Silva, R.: When worlds collide: integrating different counterfactual assumptions in 
fairness. In: NIPS’17 (2017)
Zennaro, F.M., Ivanovska, M.: Pooling of causal models under counterfactual fairness via causal judgement 
aggregation. Preprint (2018) 192



Challenges

• Dealing with non-identifiability of path-specific effects

• Causal modeling implementation for mixed-type variables

• Relaxing Markovian assumption

• Dealing with multiple causal models

• Group/Individual-level indirect discrimination
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Group and Individual-Level Indirect Discrimination

• (Zhang et al. IJCAI 2017): direct/indirect discrimination at the 
system-level using path-specific effect.

• (Zhang et al. AAAI 2018): direct/indirect discrimination in 
protected and non-protected groups using path-specific effect 
(limited to direct/indirect effects) and counterfactual (limited to 
conditioning on protected attribute).
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Zhang, L., Wu, Y., Wu, X.: A causal framework for discovering and removing direct and indirect discrimination. 
In: IJCAI’17 (2017)
Zhang, J., Bareinboim, E.: Fairness in decision-making – the causal explanation formula. In: AAAI’18 (2018)



Group and Individual-Level Indirect Discrimination

• In general, dealing with group and individual-level indirect 
discrimination requires path-specific effect (any set of paths) and 
counterfactual (conditioning on any set of attributes), i.e., 

• Has identifiability issues regarding both path-specific effect and 
counterfactual.

• Find assumptions for path-specific counterfactual quantity to be 
identifiable

– E.g., causal linear models.
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Path-specific counterfactual quantity (𝑌𝑥|𝜋 ∣ 𝒆)



Future Directions

• Building Non-discrimination Predictors

– Causal effects as constraints for classification

– Direct/indirect discrimination: data vs. model

– Trade-off between non-discrimination and accuracy

• Discrimination in tasks beyond classification

– Ranking and recommendation

– Generative adversarial network (GAN)

– Dynamic data and time series

– Text and image

• Transparency in learning process
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Causal Effects as Constraints for Classification

• Classifier learning with fairness constraints

• Challenges:

– For computational tractability, how to transform causal effect-based 
fairness constraints to convex constraints?

– How to deal with estimation errors due to the use of surrogate functions?
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min
ℎ∈ℋ

𝕃(ℎ)

s.t. ℂ ℎ ≤ 𝜏

Minimize the loss function

Subject to fairness constraints



Fairness Constraints for Classification

• Classification fairness is measured using risk difference

• Learn a classifier with fairness constraints

– For computational feasibility, the loss function, fairness constraints are 
surrogated by convex/concave functions 𝜙, 𝜅, 𝛿.

• Bounding fairness constraints with surrogate function
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Minimize the loss function

Subject to fairness constraints

Wu, Y., Zhang, L., Wu, X.: Fairness-aware classification: Criterion, convexity, and bounds. Preprint (2018)

−𝜏 ≤ 𝑅𝐷 ℎ∗ ≤ 𝜏 is guaranteed



Historical 
data 𝐷

Causal 
Model 𝑀

Generate

Classifier 
ℎ

Train Predict Predicted 
data 𝐷ℎ

Generate

Causal 
Model 𝑀ℎ

Infer

Direct/Indirect Discrimination: Data vs. Model

• Zhang et al. IJCAI 2018: target total effect.
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𝐷𝐸𝑀ℎ

𝐷𝐸𝐷
𝜀ℎ



Historical 
data 𝐷

Causal 
Model 𝑀

Generate

Classifier 
ℎ

Train Predict Predicted 
data 𝐷ℎ

Generate

Causal 
Model 𝑀ℎ

Infer

Trade-Off

• How to balance the trade-off between non-discrimination and 
utility loss?
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𝐷𝐸𝐷 𝜀ℎ

Discrimination removal



Discrimination in Tasks Beyond Classification

• Currently mainly focus on classification problems.

• Tasks beyond classification:

– Recommendation: a list of recommended items 

– Ranking: ranking positions of candidates 

– Generative adversarial network (GAN): a learned representation

– Dynamic and time series data

– Text and image

– …

• Transparency in learning process
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Fairness-aware Recommendation

• Fairness-aware Recommendation
– Serbos, D., Qi, S., Mamoulis, N., Pitoura, E., Tsaparas, P.: Fairness in package-to-group 

recommendations. In: WWW’17 (2017)

– Lin, X., Zhang, M., Zhang, Y., Gu, Z., Liu, Y., Ma, S.: Fairness-aware group 
recommendation with pareto-efficiency. In: RecSys ’17 (2017)

– Yao, S., Huang, B.: Beyond Parity: Fairness objectives for collaborative filtering. In: 
NIPS’17 (2017)

– Burke, R., Sonboli, N. Ordonez-Gauger, A.: Balanced neighborhoods for multi-sided 
fairness in recommendation.  In: FAT*’18 (2018)

• No causal modeling based method
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Fairness-aware Ranking

• Fairness-aware ranking
– Zehlike, M., Bonchi, F., Castillo, C., Hajian, S., Megahed, M., Baeza-Yates, R.: FA*IR: A fair 

top-k algorithm. In: CIKM ’17 (2017)

– Yang, K., Stoyanovich, J.: Measuring fairness in ranked outputs. In: SSDBM ’17 (2017)

– Celis, L. E., Straszak, D., Vishnoí, N. K.: Ranking with fairness constraints. In: ICALP’18 
(2018)

– Singh, A., Joachims, T.: Fairness of exposure in rankings. In: SIGKDD’18 (2018)

– Asudeh, A., Jagadish, H. V, Stoyanovich, J., Das, G.: Designing fair ranking schemes. 
Preprint (2018)

– Wu, Y., Zhang, L., Wu, X.: On discrimination discovery and removal in ranked data using 
causal graph. In: SIGKDD’18 (2018)
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Fair Ranking

• Decisions are given in permutation rather than binary decisions.
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Wu, Y., Zhang, L., Wu, X.: On discrimination discovery and removal in ranked data using causal graph. In: SIGKDD’18 
(2018)

ID Race Zip Code Interview Education Rank

U1 W 72701 1 1 10

U2 W 72701 2 2 8

U3 W 72701 2 1 9

U4 W 72701 4 2 7

U5 W 72701 2 4 6

U6 B 72701 5 5 1

U7 B 72702 4 4 3

U8 B 72702 4 5 2

U9 B 72701 3 3 5

U10 B 72702 2 5 4

Causal graphs cannot be built directly for ranked 
data:
• Causal graphs must be built for random 

variables,
• But ranking is a permutation of a series of 

unique, concatenating integers.



Fair Ranking

ID Race Zip Code Interview Education Rank

U1 W 72701 1 1 10

U2 W 72701 2 2 8

U3 W 72701 2 1 9

U4 W 72701 4 2 7

U5 W 72701 2 4 6

U6 B 72701 5 5 1

U7 B 72702 4 4 3

U8 B 72702 4 5 2

U9 B 72701 3 3 5

U10 B 72702 2 5 4

Bradley-Terry Model

Score

0.00

25.45

14.13

35.62

45.26

100.00

74.54

85.86

54.74

64.38
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• Map ranking positions to continuous score using Bradley-Terry 
Model.

• Build a mixed-variable causal graph using conditional Gaussian 
distributions.

Fair Ranking
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𝑠𝑖 − 𝑠𝑗 = log
𝑝𝑖𝑗

1 −𝑝𝑖𝑗
, 

𝑃(𝜔|ℳ) ∝ σ 𝑖,𝑗 :𝜔𝑖<𝜔𝑗
𝑝𝑖𝑗

𝑷 𝒄
Race
(𝐶)

ZipCode
(𝑍)

Education
(𝐸)

Interview
(𝐼)

Score
(𝑆)

𝑷 𝒆 𝑷 𝒊|𝒆

𝑷 𝒛|𝒄

𝑷 𝒔|𝒄, 𝒛, 𝒆, 𝒊 = 𝑵(𝝁𝒄,𝒛,𝒆,𝒊, 𝝈𝒄,𝒛,𝒆,𝒊
𝟐 )

…
…



• Derive direct and indirect discrimination measure in mixed-
variable causal graph.

• Identify the relationship between discrimination in ranking and 
discrimination in binary decision. 
– Assume that the decision is made based on a cut-off point 𝜃 of the score. If then 𝜽 ≥

𝝁𝑐+,𝒒 ≥ 𝝁𝑐−,𝒒,

𝐷𝐸𝜋𝑑 𝑐+, 𝑐− =
𝐷𝐸𝜋𝑑 𝑐+, 𝑐−

𝐸 𝑆|𝑐+
=
σ𝑍,𝐸,𝐼(𝜇𝑐+,𝑧,𝑒,𝑖−𝜇𝑐−,𝑧,𝑒,𝑖) 𝑃(𝑧, 𝑒, 𝑖 𝑐

−

𝐸 𝑆|𝑐+

𝐷𝐸𝜋𝑖 𝑐
+, 𝑐− =

𝐷𝐸𝜋𝑖 𝑐
+, 𝑐−

𝐸 𝑆|𝑐+
=
σ𝑍,𝐸,𝐼 𝜇𝑐−,𝑧,𝑒,𝑖𝑃 𝑒, 𝑖 𝑃 𝑧|𝑐+ − 𝑃 𝑧|𝑐−

𝐸 𝑆|𝑐+

Fair Ranking

𝑆𝐸𝜋𝑑
𝐵𝑖𝑛 ≤ 𝜏 implies 𝑆𝐸𝜋𝑑 ≤

2 2 𝜏−𝛽 𝜎

𝛼

𝑆𝐸𝜋𝑖
𝐵𝑖𝑛 ≤ 𝜏 implies  𝑆𝐸𝜋𝑖 ≤

2 2 𝜏−𝑐 𝜎

𝛼
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Fair Generative Adversarial Networks

• Fair Generative Adversarial Networks

– Xu, D., Yuan, S., Zhang, L., Wu, X.: FairGAN: fairness-aware generative 
adversarial networks. Preprint (2018)

– Sattigeri, Prasanna, Hoffman, Samuel C., Chenthamarakshan, Vijil, 
Varshney, Kush R.: Fair GAN. Preprint (2018)
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Fairness-aware Generative Adversarial Networks
(FairGAN)

• Instead of modifying the training data to remove 
discriminatory effect, FairGAN can directly generate fair 
data.

• Generative adversarial networks (GANs) is able to 
generate high quality synthetic data that are similar to 
real data.

• Besides generating synthetic samples that match the 
distribution of real data, FairGAN also aim to prevent 
the discrimination (with no risk difference) in the 
generated dataset.

Historical 
Data

Fair Data

Directly generate fair data 
with no risk difference

Generate

Xu, D., et al.: FairGAN: Fairness-aware generative adversarial networks. Preprint (2018) 209



Fair Data Generation

Generator

𝐺𝐷𝑒𝑐

𝑃𝒛
Noise

𝑃𝑐
Protected attribute

𝐷1
Discriminator

𝐷2
Discriminator

𝑃𝐺(𝑥, 𝑒|𝑐)𝑃𝑑𝑎𝑡𝑎(𝑥, 𝑒|𝑐)

fake:( ො𝑥, Ƹ𝑒, Ƹ𝑐)

real: (𝑥, 𝑒, 𝑐)

( ො𝑥, Ƹ𝑒| Ƹ𝑐 = 1)

(ො𝑥, Ƹ𝑒| Ƹ𝑐 = 0)

• The first minimax game ensures the generated 
data close to the real data

• The second minimax game ensures fairness by 
removing the correlation between unprotected 
attributes, decision and the protected attributes

min
𝐺𝐷𝑒𝑐

max
𝐷1,𝐷2

𝑉 𝐺𝐷𝑒𝑐, 𝐷1, 𝐷2 = 𝑉1 𝐺𝐷𝑒𝑐 , 𝐷1 + 𝜆𝑉2 𝐺𝐷𝑒𝑐, 𝐷2 ,

where 

𝑉1 𝐺𝐷𝑒𝑐 , 𝐷1 = 𝔼𝑐~𝑃𝑑𝑎𝑡𝑎 𝑐 ,(𝑥,𝑒)~𝑃𝑑𝑎𝑡𝑎(𝑥,𝑒|𝑐) log𝐷1 𝑥, 𝑒, 𝑐

+𝔼 Ƹ𝑠~𝑃𝐺 𝑠 ,( ො𝑥, Ƹ𝑒)~𝑃𝐺(𝑥,𝑒|𝑐)[log(1 − 𝐷1( ො𝑥, Ƹ𝑒, Ƹ𝑐))]

𝑉2 𝐺𝐷𝑒𝑐, 𝐷2 = 𝔼( ො𝑥, Ƹ𝑒)~𝑃𝐺 𝑥,𝑒|𝑐=1 log𝐷2 ො𝑥, Ƹ𝑒

+𝔼( ො𝑥, Ƹ𝑒)~𝑃𝐺 𝑥,𝑒|𝑐=0 [log(1 − 𝐷2( ො𝑥, Ƹ𝑒))]
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Dealing with dynamic data and time series

• Structural causal model mainly deals with non-temporal data.

• Causal relationship in time series: Granger causality
– One time series is useful in predicting another

– Granger causality is not necessarily true causality

• How to integrate the Granger causality with the structural causal 
model?
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Future Directions

• Building Non-discrimination Predictors

– Causal effects as constraints for classification

– Direct/indirect discrimination: data vs. model

– Trade-off between non-discrimination and accuracy

• Discrimination in tasks beyond classification

– Ranking and recommendation

– Generative adversarial network (GAN)

– Dynamic data and time series

– Text and image

• Transparency in learning process
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