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Abstract
In discrimination-aware classification, the pre-
process methods for constructing a discrimination-
free classifier first remove discrimination from the
training data, and then learn the classifier from
the cleaned data. However, they lack a theoreti-
cal guarantee for the potential discrimination when
the classifier is deployed for prediction. In this
paper, we fill this gap by mathematically bound-
ing the discrimination in prediction. We adopt
the causal model for modeling the data genera-
tion mechanism, and formally defining discrimina-
tion in population, in a dataset, and in prediction.
We obtain two important theoretical results: (1)
the discrimination in prediction can still exist even
if the discrimination in the training data is com-
pletely removed; and (2) not all pre-process meth-
ods can ensure non-discrimination in prediction
even though they can achieve non-discrimination
in the modified training data. Based on the results,
we develop a two-phase framework for construct-
ing a discrimination-free classifier with a theoret-
ical guarantee. The experiments demonstrate the
theoretical results and show the effectiveness of our
two-phase framework.

1 Introduction
Discrimination-aware classification is receiving an increas-
ing attention in the data mining and machine learning
fields. Many methods have been proposed for constructing
discrimination-free classifiers, which can be broadly classi-
fied into three categories: the pre-process methods that mod-
ify the training data [Kamiran and Calders, 2009a; Feld-
man et al., 2015; Zhang et al., 2017; Calmon et al., 2017;
Nabi and Shpitser, 2017], the in-process methods that ad-
just the learning process of the classifier [Calders and Ver-
wer, 2010; Kamishima et al., 2011; 2012; Zafar et al., 2017],
and the post-process methods that directly change the pre-
dicted labels [Kamiran et al., 2010; Hardt et al., 2016].
All three categories of methods have their respective limi-
tations. For the in-process methods, they usually perform
some tweak or develop some regularizers for the classi-
fier to correct or penalize discriminatory outcomes during

the learning process. However, since the discrimination or
fair constraints are generally not convex functions, surrogate
functions are usually used for the minimization. As a re-
sult, additional bias might be introduced due to the approx-
imation errors associated with the surrogate function. For
the post-process methods, they are restricted to those who
can modify the predicted label of each individual indepen-
dently. Thus, methods that map the whole dataset or pop-
ulation to a new non-discriminatory one cannot be adopted
for post-process, which means that a number of causal-based
discrimination removal methods (e.g., [Zhang et al., 2017;
Nabi and Shpitser, 2017]) cannot be applied.

In our work, we target the pre-process methods that mod-
ify the training data, where some methods only modify the
label, such as the Massaging [Kamiran and Calders, 2009a;
Žliobaitė et al., 2011] and the Causal-Based Removal [Zhang
et al., 2017], and some methods also modify the data at-
tributes other than the label, such as the Preferential Sam-
pling [Kamiran and Calders, 2012; Žliobaitė et al., 2011], the
Reweighing [Calders et al., 2009], and the Disparate Impact
Removal [Feldman et al., 2015; Adler et al., 2016]. The fun-
damental assumption of the pre-process methods is that, since
the classifier is learned from a discrimination-free dataset, it
is likely that the future prediction will also be discrimination-
free [Kamiran and Calders, 2009b]. Although this assump-
tion is plausible, however, there is no theoretical guarantee to
show “how much likely” it is and “how discrimination-free”
the prediction would be given a training data and a classifier.
The lack of the theoretical guarantees places great uncertainty
on the performance of all pre-process methods.

In this paper, we fill this gap by modeling the discrimina-
tion in prediction using the causal model [Pearl, 2009]. A
causal model is a structural equation-based mathematical ob-
ject that describes the causal mechanism of a system. We
assume that there exists a fixed but unknown causal model
that represents the underlying data generation mechanism of
the population. Based on the causal model, we define the
causal measure of discrimination in population as well as in
prediction. We then formalize two problems, namely dis-
covering and removing discrimination in prediction. Based
on specific assumptions regarding the causal model and the
causal measure of discrimination, we conduct concrete anal-
ysis of discrimination. We derive the formula for quantita-
tively measuring the discriminatory effect in population from
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Notation Definition
C Protected attribute
Z = {Z1, · · · ,Zm} Non-protected attributes
L Label of decision
h : C × Z→ L Classifier
M Causal model of population
Mh Causal model of prediction
D = {(c( j), z( j), l( j))} Training data
Dh = {(c( j), z( j), h(c( j),z( j)))} Training data w/ predicted labels

Table 1: Table of notations.

the observable probability distributions. We then derive the
corresponding causal measure of the discrimination in predic-
tion, as well as their approximations from the sample dataset.
Finally, we link the discrimination in prediction with the dis-
crimination in the training data by a probabilistic condition,
which mathematically bounds the probability of the discrim-
ination in prediction being within a given interval in terms of
the training data and classifier.

As a consequence, we obtain two important theoretical re-
sults: (1) even if the discrimination in the training data is
completely removed, the discrimination in prediction can still
exist due to the bias in the classifier; and (2) for removing dis-
crimination, different from the claims of many previous work,
not all pre-process methods can ensure non-discrimination in
prediction even though they can achieve non-discrimination
in the modified training data. We show that to guarantee non-
discrimination in prediction, the pre-process methods should
only modify the label. Based on the results, we develop a two-
phase framework for constructing a discrimination-free clas-
sifier with a theoretical guarantee, which provides a guideline
for employing existing pre-process methods or designing new
ones. The experiments demonstrate the theoretical results and
show the effectiveness of our two-phase framework.

2 Problem Formulation
2.1 Notations and Preliminaries
We consider an attribute space which consists of some pro-
tected attributes, the label of certain decision attribute, and
the non-protected attributes. Throughout the paper, we use
an uppercase alphabet, e.g., X to represent an attribute; a bold
uppercase alphabet, e.g., X, to represent a subset of attributes.
We use a lowercase alphabet, e.g., x, to represent a realization
of attribute X; a bold lowercase alphabet, e.g., x, to represent
a realization of X. For ease of representation, we assume that
there is only one protected attribute, denoted by C, which is a
binary attribute associated with the domain values of the non-
protected group c+ and the protected group c−. We denote the
label of the decision attribute by L, which is a binary attribute
associated with the domain values of the positive label l+ and
negative label l−. According to the convention in machine
learning, we also define that l+ = 1 and l− = 0. The set of all
the non-protected attributes is denoted by Z = {Z1, · · · ,Zm}.
Please refer to the notation table shown as Table 1.

A causal model is formally defined as follows.

Definition 1 (Causal Model). A causal model M is a triple
M = 〈U,V,F〉 where

1. U is a set of hidden contextual variables that are deter-
mined by factors outside the model.

2. V is a set of observed variables that are determined by
variables in U ∪ V.

3. F is a set of equations mapping from U×V to V. Specif-
ically, for each Vi ∈ V, there is an equation fi mapping
from U × (V\Vi) to Vi, i.e.,

vi = fi(pai,ui),

where pai is a realization of a set of observed variables
PAi ⊆ V\Vi called the parents of Vi, and ui is a realiza-
tion of a set of hidden variables Ui ⊆ U.

The causal effect in the causal model is defined over the in-
tervention that fixes the value of an observed variable(s) V to
a constant(s) v while keeping the rest of the model unchanged.
The intervention is mathematically formalized as do(V = v)
or simply do(v). Then, for any variables X,Y ∈ V, the distri-
bution of Y after do(x) is defined as [Pearl, 2009]

P(y|do(x)) , P(Y = y|do(X = x)) =
∑

{u:Yx(u)=y}

P(u), (1)

where Yx(u) denotes the value of Y after intervention do(x)
under context U = u.

Note that P(u) is an unknown joint distribution of all hid-
den variables. If the causal model satisfies the Markovian as-
sumption: (1) the associated causal graph of the causal model
is acyclic; and (2) all variables in U are mutually independent,
P(y|do(x)) can be computed from the joint distribution of V
according to the truncated factorization formula [Pearl, 2009]

P(y|do(x)) =
∑

v′

∏
Vi,X

P(vi|pai)δX=x , (2)

where the summation is a marginalization that traverses all
value combinations of V′ = V\{X,Y}, and δX=x means re-
placing X with x in each term.

2.2 Model Discrimination in Prediction
Assume that there exists a fixed population over the space
C × Z × L. The values of all the attributes in the population
are determined by a causal modelM, which can be written as

Causal ModelM
c = fC(paC ,uC)
zi = fi(pai,ui) i = 1, · · · ,m
l = fL(paL,uL)

where fL can be considered as the decision making process
in the real system. Without ambiguity, we can also use M
to denote the population, and use the terms mechanism and
population interchangeably. In practice, M is unknown and
we can only observe a sample datasetD = {(c( j), z( j), l( j)); j =
1, · · · , n} drawn from the population.

A classifier h is function mapping from C × Z to L. A hy-
pothesis space H is a set of candidate classifiers. A learn-
ing algorithm analyzes dataset D as the training data to
find a classifier from H that minimizes the difference be-
tween the predicted labels h(c( j), z( j)) and the true labels l( j)

( j = 1, · · · , n). Once training completes, the classifier is de-
ployed to infer prediction on any new unlabeled data. It is
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usually assumed that the unlabeled data is drawn from the
same population as the training data, i.e., M. Therefore, in
prediction, the values of all the attributes other than the label
are determined by the same mechanisms as those inM, and
meanwhile the classifier acts as a new mechanism for deter-
mining the value of the label. We considerM with function
fL(·) being replaced by classifier h(·) as the causal model of
classifier h, denoted byMh, which is written as

Causal ModelMh

c = fC(paC ,uC)
zi = fi(pai,ui) i = 1, · · · ,m
l = h(c, z)

If we apply the classifier on D, we can obtain a new dataset
Dh by replacing the original labels with the predicted labels,
i.e., Dh = {(c( j), z( j), h(c( j), z( j))); j = 1, · · · , n}. Straightfor-
wardly,Dh can be considered as a sample drawn fromMh.

The discrimination in prediction made by classifier h can
be naturally defined as the discrimination inMh. To this end,
we first define a measure of discrimination inM based on the
causal relationship specified by M, denoted by DEM called
the true discrimination. By adopting the same measure, we
denote the discrimination in Mh by DEMh , called the true
discrimination in prediction. Then, we denote the approxi-
mation of DEM from datasetD by DED, and similarly denote
the approximation of DEMh from datasetDh by DEDh .

Our target is to discover and remove the true discrimination
in prediction, i.e., DEMh , based on certain causal measure of
discrimination defined on M, i.e., DEM. When calculating
DEMh from dataset D, we may encounter disturbances such
as the sampling error ofD and the misclassification of h. We
then need to compute analytic approximation to DEMh . Thus,
we define the problem of discovering discrimination in pre-
diction as follows.

Problem 1 (Discover Discrimination in Prediction). Given a
causal measure of discrimination defined onM, i.e., DEM, a
sample dataset D and a classifier h trained on D, compute
analytic approximation to the true discrimination in predic-
tion, i.e., DEMh .

If the true discrimination in prediction is detected accord-
ing to the approximation, the next step is to remove the dis-
crimination through tweaking the dataset and/or the classifier.
Thus, we define the problem of removing discrimination in
prediction as follows.

Problem 2 (Remove Discrimination in Prediction). Given
DEM, D and h, tweak D and/or h in order to make DEMh

be bounded by a user-defined threshold τ.

3 Discover Discrimination in Prediction
In the above general problem definitions, DEM can be any
reasonable causal measure of discrimination defined on any
causal model. However, a concrete analysis of discrimination
must rely on specific assumptions regarding the causal mea-
sure of discrimination and the causal model. The remaining
of the paper is based on following assumptions: (1)M satis-
fies the Markovian assumption; (2) we consider all causal ef-
fects (total effect) of C on L as discriminatory; (3) we assume
that C has no parent and L has no child. The first assumption

is necessary for computing the causal effect from the observ-
able probability distributions. The second assumption is be-
cause the total causal effect is the causal relationship that is
easiest to interpret and estimate. We will extend our results
to other discrimination definitions such as those in [Zhang et
al., 2017; Bonchi et al., 2017] in the future work. The last as-
sumption is to make our theoretical results more concise and
can be easily relaxed.

3.1 Causal Measure of Discrimination
We first derive the true discrimination inM. The key of dis-
crimination is a counterfactual question: whether the decision
of an individual would be different had the individual been of
a different protected/non-protected group (e.g., sex, race, age,
religion, etc.)? To answer this question, we can perform an in-
tervention on each individual to change the value of protected
attribute C and see how label L will change. We consider the
difference between the expectation of the labels when per-
forming do(c+) for all individuals and the expectation of the
labels when performing do(c−) for all individuals, and use it
as the causal measure of discrimination.

To obtain the above difference, note that the causal model
is completely specified at the individual level when context
U = u is specified. For each individual specified by u, denote
the label of individual u by Lc+ (u) (resp. Lc− (u)) when C is
fixed according to do(c+) (resp. do(c−)). Then, the difference
in the label of individual u is given by Lc+ (u) − Lc− (u). The
expected difference of the labels over all individuals is hence
given by E[Lc+ (u)−Lc− (u)]. Based on this analysis, we obtain
the following proposition.

Proposition 1. Given a causal model M, the true discrimi-
nation is given by

DEM = P(l+|c+) − P(l+|c−).

Proof. The above expectations can be computed as

E[Lc+ (u)] =
∑

u
Lc+ (u)P(u) =

∑
{u:Lc+ (u)=l+}

l+P(u)

+
∑

{u:Lc+ (u)=l−}

l−P(u) =
∑

{u:Lc+ (u)=l+}

P(u) = P(l+|do(c+)),
(3)

where the last step is according to Eq. (1). According to Eq.
(2), we have

P(l+|do(c+)) =
∑

z
P(l+|paL)δC=c+

∏
Zi∈Z

P(zi|pai)δC=c+ .

On the other hand, since C has no parent, we have

P(l+|c+) =
P(l+, c+)

P(c+)
=

∑
z ���P(c+)P(l+|paL)

∏
Zi∈Z P(zi|pai)

���P(c+)
,

Thus, we have P(l+|do(c+)) = P(l+|c+), leading to
E[Lc+ (u)] = P(l+|c+). Similarly we can prove E[Lc− (u)] =
P(l+|c−). Hence, the proposition is proven. �

Interestingly, the obtained discrimination causal measure
is the same as the classic statistical discrimination metric risk
difference, which is widely used as the non-discrimination
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constraint in discrimination-aware learning [Romei and Rug-
gieri, 2014]. Our analysis can help understand the assump-
tions and scenarios in which the risk difference applies.

Given dataset D, we approximate DEM using the maxi-
mum likelihood estimation, denoted by DED as shown below.
Proposition 2. Given a datasetD, the discrimination inD is
given by

DE(c+, c−)D = P̂(l+|c+) − P̂(l+|c−),

where
P̂(l+|c+) =

∑
z

P̂(l+|c+, z)P̂(z|c+), (4)

with P̂(·) being the conditional frequency inD.
Given a classifier h : C×Z→ L, denote the predicted labels

by L̃. By adopting the same causal measure of discrimination
of DEM, we obtain DEMh shown as follows.
Proposition 3. Given a causal model M and a classifier h,
the true discrimination in prediction is given by

DEMh = P(l̃+|c+) − P(l̃+|c−),

where P(l̃+|c+) (resp. P(l̃+|c−)) is the probability of the posi-
tive predicted labels for the data with C = c+ (resp. C = c−).

We similarly define DEDh as the maximum likelihood esti-
mation of DEMh .
Proposition 4. Given a dataset D and a classifier h trained
onD, the discrimination inDh is given by

DEDh = P̂(l̃+|c+) − P̂(l̃+|c−),

where
P̂(l̃+|c+) =

∑
z
I[h(c+,z)=l+]P̂(z|c+). (5)

with I[·] the indicator function.

3.2 Bounding Discrimination in Prediction
To approximate DEMh from D, sampling error cannot be
avoided sinceD is only a subset of the entire population. Al-
though exact measurement of sampling error is generally not
feasible as M is unknown, it can be probabilistically bounded.
In the following we first bound the difference between DEM
and its approximation DED, and then extend the result to the
difference between DEMh and its approximation DEDh .
Proposition 5. Given a causal model M and a sample
dataset D with size of n, the probability of the difference be-
tween DEM and DED no larger than t is bounded by

P
(
|DEM − DED| ≤ t

)
> 1 − 4e−

n+n−
n t2

,

where n+ and n− (n+ + n− = n) are the numbers of individuals
with c+ and c− inD.

Proof. By definition of DEM and DED we have

DEM − DED =
(
P(l+|c+) − P̂(l+|c+)

)
+

(
P̂(l+|c−) − P(l+|c−)

)
.

Denoting by l(+ j) the label of the jth individual in D with
C = c+, we can write P̂(l+|c+) as

P̂(l+|c+) =
1
n+

(
I[l(+1)=l+] + · · · + I[l(+n+ )=l+]

)
,

where indicators I[l(+ j)=l+] ( j = 1 · · · n+) can be considered as
independent random variables bounded by the interval [0, 1].
Note that E[P̂(l+|c+)] = P(l+|c+). According to the Hoeffd-
ing’s inequality [Murphy, 2012], we have

P
( ∣∣∣P(l+|c+) − P̂(l+|c+)

∣∣∣ ≥ t
)
≤ 2e−2n+t2

.

Similarly, we have P
(∣∣∣P(l+|c−) − P̂(l+|c−)

∣∣∣ ≥ t
)
≤ 2e−2n−t2

.
Therefore, we have

P
(
|DEM − DED| ≤ t

)
≥P

( ∣∣∣P(l+|c+) − P̂(l+|c+)
∣∣∣ +

∣∣∣P(l+|c−) − P̂(l+|c−)
∣∣∣ ≤ t

)
≥max

0≤x≤t
P
( ∣∣∣P(l+|c+)−P̂(l+|c+)

∣∣∣≤ x
)
P
( ∣∣∣P(l+|c−)−P̂(l+|c−)

∣∣∣≤ t−x
)

≥max
0≤x≤t

(1 − 2e−2n+ x2
)(1 − 2e−2n−(t−x)2

)

>1 − 4e−
n+n−

n t2
,

(6)

where the last line is by substituting x with
√

n−
√

n++
√

n−
t. �

For extending Proposition 5 to Proposition 6, the difference
is that, since h is a classifier depending on training data D,
indicators I[h(c(+ j),z(+ j))=l+] cannot be considered as independent.
Thus, the Hoeffding’s inequality cannot be directly applied
and a uniform bound for all hypotheses inH is needed.
Proposition 6. Given a causal model M, a sample dataset
D, and a classifier h : C × Z → L from hypothesis space H ,
the probability of the distance between DEMh and DEDh no
larger than t is bounded by

P
( ∣∣∣DEMh − DEDh

∣∣∣ ≤ t
)
≥ 1 − δ(t),

where

δ(t) =


4|H|2e−

n+n−
n t2

ifH is finite,

4
(2en+)d + (2en−)d

dd e−
n+n−

n t2
ifH is infinite,

with d being the VC dimension ofH .

Proof. According to the definitions of DEMh and DEDh ,

DEMh−DEDh =
(
P(l̃+|c+) − P̂(l̃+|c+)

)
+
(
P(l̃+|c−) − P̂(l̃+|c−)

)
.

Similar to the proof of Proposition 5, we treat P̂(l̃+|c+) as the
mean of indicators I[h(c(+ j),z(+ j))=l+] ( j = 1 · · · n+). According to
the generalization bound in statistical learning theory [Vap-
nik, 1998], ifH is finite we have

P
(∣∣∣P(l̃+|c+) − P̂(l̃+|c+)

∣∣∣ ≥ t
)
≤ 2|H|e−2n+t2

,

where |H| is the size ofH . IfH is infinite we have

P
(∣∣∣P(l̃+|c+) − P̂(l̃+|c+)

∣∣∣ ≥ t
)
≤ 4

(
2en+

d

)d

e−2n+t2
,

where d is the VC dimension ofH . Then the proposition can
be proven similarly to Eq. (6). �
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Proposition 6 provides an approximation of DEMh from
DEDh . However, since pre-process methods deal with the
training data, it is imperative to further link DEMh with DED.
Next, we give the relation between DEDh and DED in terms
of a bias metric that we refer to as the the error bias.
Definition 2 (Error Bias). For any classifier h trained on a
training datasetD, the error bias is given by

εh,D = ε+
1 − ε

+
2 − (ε−1 − ε

−
2 ),

where ε+
1 , ε

−
1 are the percentages of false positives on data

with C = c+ and C = c− respectively, and ε+
2 , ε

−
2 are the

percentages false negatives on data with C = c+ and C = c−
respectively.
Proposition 7. For any classifier h that is trained on D, we
have

DEDh − DED = εh,D.

Proof. By definition, ε+
1 is given by

ε+
1 =

1
n+

∑
{ j:c( j)=c+,l( j)=l−}

I[h(c( j),z( j))=l+],

which can be rewritten as

ε+
1 =

∑
z

P̂(z|c+) · I[h(c( j),z( j))=l+] · (1 − P̂(l+|c+, z)).

Similarly, ε+
2 is given by

ε+
2 =

∑
z

P̂(z|c+) · I[h(c( j),z( j))=l−] · P̂(l+|c+, z).

Subtracting ε+
2 from ε+

1 , we obtain

ε+
1 − ε

+
2 =∑

z
P̂(z|c+)

(
I[h(c+,z)=l+](1−P̂(l+|c+, z))−I[h(c+,z)=l−]P̂(l+|c+, z)

)
,

which is equivalent to

ε+
1 − ε

+
2 =

∑
z

P̂(z|c+) ·
(
I[h(c+,z)=l+] − P̂(l+|c+, z)

)
.

Similarly for data with C = c−, we have

ε−1 − ε
−
2 =

∑
z

P̂(z|c−) ·
(
I[h(c−,z)=l+] − P̂(l+|c−, z)

)
.

On the other hand, according to Eq. (4) and (5) we have

DEDh−DED =
∑

z
P̂(z|c+)

(
I[h(c+,z)=l+] − P̂(l+|c+, z)

)
−
∑

z
P̂(z|c−)

(
I[h(c−,z)=l+] − P̂(l+|c−, z)

)
= ε+

1 −ε
+
2 − (ε−1 −ε

−
2 ).

Letting εh,D = ε+
1 − ε

+
2 − (ε−1 − ε

−
2 ) completes the proof. �

Using Proposition 7, we rewrite Propositions 6 to Theorem
1 that is easier to interpret and utilize in practice.
Theorem 1. Given a causal model M, a sample dataset D
and a classifier h trained onD, DEMh is bounded by

P
( ∣∣∣DEMh

∣∣∣ ≤ ∣∣∣DED + εh,D

∣∣∣ + t
)
≥ 1 − δ(t),

where the meaning of δ(t) is same as that in Proposition 6.

Theorem 1 gives a criterion of non-discrimination in pre-
diction that incorporates both the discrimination in the train-
ing data and the error bias of the classifier, i.e.,

∣∣∣DED + εh,D

∣∣∣
being bounded by a threshold τ. It shows that either given
a discrimination-free dataset D, i.e., |DED| ≤ τ, or a “bal-
anced” classifier, i.e.,

∣∣∣εh,D

∣∣∣ ≤ τ, we cannot guarantee non-
discriminatory prediction. Instead, it requires to ensure that
the sum of DED and εh,D is within the threshold.

4 Remove Discrimination in Prediction
This section solves the problem of removing discrimination
in prediction: if criterion

∣∣∣DED + εh,D

∣∣∣ ≤ τ is not satisfied
for a classifier, how can we meet the criterion through mod-
ifying the training data and tweaking the classifier? Denote
by D∗ a dataset obtained by modifying D, and by h∗ a new
classifier trained on D∗. Note that when the training data is
modified, the error bias of the classifier built on it will also
change. Thus, it is difficult to perform the training data modi-
fication and the classifier tweaking simultaneous. We propose
a framework for modifying the training data and the classifier
in two successive phases, as summarized in Algorithm 1.

Algorithm 1: Two-phase framework.
1 If

∣∣∣DED+εh,D

∣∣∣ ≤ τ, we are done. Otherwise, modify the
labels in the training datasetD to obtain a modified
datasetD∗ such that |DED∗ | ≤ τ.

2 Train a classifier h∗ onD∗. If
∣∣∣DED∗+εh∗,D∗

∣∣∣ ≤ τ, we are
done. Otherwise, tweak classifier h∗ to meet the above
requirement.

In the first phase, we modify D to remove the discrimi-
nation it contains. The modified dataset D∗ can be consid-
ered as being generated by a causal model M∗ that is dif-
ferent fromM with respect to the modification. Note that if∣∣∣DED∗+εh∗,D∗

∣∣∣ ≤ τ is achieved, Theorem 1 ensures the bound
of discrimination for M∗h∗ , i.e., the discrimination of h∗ per-
formed onM∗, but not forMh∗ , i.e., the discrimination of h∗
performed on the original population. If we only modify the
label ofD,M∗ can be written as

Causal ModelM∗
c = fC(paC , uC)
zi = fi(pai, ui) i = 1, · · · ,m
l = f ∗L (pa∗L, u

∗
L)

Then, the causal model of any classifier h∗ trained on D∗ and
performed onM∗ is given by

Causal ModelM∗h∗
c = fC(paC , uC)
zi = fi(pai, ui) i = 1, · · · ,m
l = h∗(c, z)

which is equivalent toMh∗ . Thus, non-discrimination inM∗h∗
also means non-discrimination inMh∗ . On the other hand, if
we modify attributes other than L, since the new unlabeled
data is drawn from the original population, Mh∗ is inconsis-
tent with M∗h∗ . As a result, the non-discrimination result of
the training data cannot be applied to the prediction of the
new data. Therefore, we have the following corollary derived
from Theorem 1.
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Size DEM DED
DEDh DEMh

DT SVM DT SVM
500

0.130
0.131 ± 1.6E−3 0.145 ± 4.1E−3 0.132 ± 8.2E−3 0.139 ± 3.5E−3 0.125 ± 6.8E−3

2000 0.131 ± 4.8E−4 0.129 ± 1.1E−3 0.121 ± 7.4E−3 0.130 ± 9.4E−4 0.120 ± 7.1E−3
10000 0.129 ± 8.0E−5 0.138 ± 4.0E−4 0.150 ± 4.3E−3 0.138 ± 3.8E−4 0.150 ± 4.3E−3

Table 2: Measured discrimination before discrimination removal (values larger than threshold are highlighted as bold).

Size Two-phase framework (MSG) DI
DED∗ DEMh∗ DEMh∗ (w/o classifier tweaking) DED∗ DEMh∗

500 0.004 ± 3.7E−6 0.015 ± 1.0E−3 0.068 ± 4.6E−3 2E−4 ± 1.4E−3 0.092 ± 6.1E−3
2000 0.001 ± 1.7E−7 0.016 ± 5.3E−4 0.067 ± 4.3E−3 0.001 ± 3.4E−4 0.095 ± 1.6E−3

10000 2E−4 ± 9.7E−9 0.013 ± 3.3E−4 0.061 ± 3.3E−3 0.001 ± 6.8E−5 0.107 ± 5.4E−4

Table 3: Measured discrimination after discrimination removal (decision tree as the classifier).

Corollary 1. LetD∗ be a modified dataset fromD, and h∗ be
a new classifier trained onD∗. IfD∗ only modifies the labels,
then

∣∣∣DED∗+εh∗,D∗
∣∣∣ ≤ τ is a sufficient condition to achieve

P
( ∣∣∣DEMh∗

∣∣∣ ≤ τ + t
)
≥ 1 − δ(t),

where the meaning of δ(t) is same as that in Proposition 6.
In the second phase, we make modifications to h∗ to reduce

the error bias. Although dealing with a different fairness cri-
terion, existing methods for balancing the misclassification
rates (e.g., [Hardt et al., 2016]) can be easily extended for
solving this problem. For the purpose of evaluating the cor-
rectness of our theoretical results, here we use a simple al-
gorithm RandomFlip for reducing the error bias that can be
applied to any classifier. After the classifier makes a predic-
tion, RandomFlip randomly flips the predicted label with cer-
tain probability p+ (resp. p−) if the individual has C = c+

(resp. C = c−) to achieve
∣∣∣DED∗+εh∗,D∗

∣∣∣ ≤ τ, where p+ can
be computed according to the prediction of h∗ over D∗. De-
noting σ = τ− |DED∗ |, it suffices to make |ε+

1 − ε
+
2 | ≤ σ/2 and

|ε−1 − ε
−
2 )| ≤ σ/2. Assume that ε+

1 − ε
+
2 > σ/2, then it can be

easily shown that p+ should satisfy (ε+
1 − ε

+
2 − σ/2)

(
n+

fp+tp

)
≤

p+ ≤ (ε+
1 − ε

+
2 )

(
n+

fp+tp

)
. Similar result can be obtained if

ε+
1 − ε

+
2 < −σ/2.

5 Empirical Evaluation
5.1 Experimental Setup
In this section, we conduct experiments to evaluate our theo-
retical results. For simulating a population, we adopt a semi-
synthetic data generation method. We first learn a causal
model M for a real dataset, the Adult dataset [Lichman,
2013], and treat it as the ground-truth. We then generate the
training data D based onM. The causal model is built using
the open-source software Tetrad [Glymour and others, 2004].

The Adult dataset consists of 11 attributes including age,
education, sex, occupation, income, etc. Due to the
sparse data issue, we binarize each attribute’s domain values
into two classes to reduce the domain sizes. We treat sex as
C and income as L. The discrimination is measured as 0.13
in M, i.e., DEM = 0.13. Based on the underlying distribu-
tion of M, we generate a number of training data sets with
different sample sizes.

When constructing discrimination-free classifiers using the
two-phase framework, we select one representative data mod-
ifying algorithm that only modifies L, the Massaging (MSG)
algorithm [Kamiran and Calders, 2009a]. For other algo-
rithms, we will evaluate their performance in preserving data
utility in the future work. For comparison, we also include
an algorithm that modifies Z, the Disparate Impact Removal
(DI) algorithm [Adler et al., 2016]. The proposed Random-
Flip algorithm is used for tweaking the classifier. We assume
a discrimination threshold τ = 0.05, i.e., we want to ensure
that the discrimination in prediction is not larger than 0.05.

5.2 Experiment Results
We first measure the discrimination in each training data set,
i.e., DED. Then, we learn the classifier h from the training
data where two classifiers, decision tree (DT) and support
vector machine (SVM) are used. By replacing the labels in
the training data with the labels predicted by the classifier,
we obtainDh whose discrimination is measured as DEDh . Fi-
nally, we measure the discrimination in prediction, i.e., DEMh

according to Proposition 3. For each sample size, we repeat
the experiments 100 times by randomly generating 100 sets
of training data. We report the average and variance of each
measured discrimination.

The results are shown in Table 2. As expected, with the
increase of the sample size, the difference between DEM and
DED decreases as shown by the variance. Since DED > 0.05,
the training data contains discrimination. As a result, both
the training data with predicted labels, i.e., Dh, and the pre-
diction, i.e.,Mh, also contain discrimination.

To show the effectiveness of the two-phase framework, we
first apply MSG to completely remove the discrimination in
the above training data, obtaining the modified training data
D∗. Then, a decision tree h∗ is built on D∗, and the Ran-
domFlip algorithm is executed to tweak the classifier so that
the error bias is less than 0.05, i.e.,

∣∣∣εh∗,D∗
∣∣∣ ≤ 0.05. Finally,

we measure the discrimination inMh∗ . For comparison, the
same process is also performed for DI. The results are shown
in Table 3. By using the two-phase framework, discrimina-
tion is removed from the training data as shown by DED∗ ,
and more importantly, removed from the prediction as shown
by DEMh∗ . We also see that, if the classifier tweaking is not
performed, the prediction still contains discrimination. How-
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ever, for DI, even when the discrimination is removed from
the training data, and the error bias in the classifier is also re-
moved, there still exists discrimination in prediction. These
results are consistent with our theoretical conclusions.

6 Conclusions
In this paper, we addressed the limitation of the pre-process
methods that there is no guarantee about the discrimination in
prediction. Our theoretical results show that: (1) only remov-
ing discrimination from the training data cannot ensure non-
discrimination in prediction for any classifier; and (2) when
removing discrimination from the training data, one should
only modify the labels in order to obtain a non-discrimination
guarantee. Based on the results, we developed a two-phase
framework for constructing a discrimination-free classifier
with a theoretical guarantee. The experiments adopting a
semi-synthetic data generation method demonstrate the the-
oretical results and show the effectiveness of our two-phase
framework.
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