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Abstract
In this paper, we investigate the problem of discov-
ering both direct and indirect discrimination from
the historical data, and removing the discrimina-
tory effects before the data is used for predictive
analysis (e.g., building classifiers). The main draw-
back of existing methods is that they cannot dis-
tinguish the part of influence that is really caused
by discrimination from all correlated influences. In
our approach, we make use of the causal network
to capture the causal structure of the data. Then
we model direct and indirect discrimination as the
path-specific effects, which accurately identify the
two types of discrimination as the causal effects
transmitted along different paths in the network.
Based on that, we propose an effective algorithm
for discovering direct and indirect discrimination,
as well as an algorithm for precisely removing both
types of discrimination while retaining good data
utility. Experiments using the real dataset show the
effectiveness of our approaches.

1 Introduction
Discrimination refers to unjustified distinctions in decisions
against individuals based on their membership in a certain
group. Laws and regulations have been established to pro-
hibit discrimination on several grounds, such as gender, age,
sexual orientation, race, religion, and disability, which are re-
ferred to as the protected attributes. Various predictive mod-
els have been built around the collection and use of histori-
cal data to make important decisions like employment, credit
and insurance. If the historical data contains discrimination,
the predictive models are likely to learn the discriminatory
relationship present in the historical data and apply it when
making new decisions. Therefore, it is imperative to ensure
that the data goes into the predictive models and the decisions
made with its assistance are not subject to discrimination.
In the legal field, discrimination falls into direct and indi-

rect discrimination. Direct discrimination occurs when indi-
viduals receive less favorable treatment explicitly based on
the protected attributes. An example would be rejecting a
qualified female applicant in applying a university just be-
cause of her gender. Indirect discrimination refers to the situ-

ation where the treatment is based on apparently neutral non-
protected attributes but still results in unjustified distinctions
against individuals from the protected group. A well-known
example of indirect discrimination is redlining, where the res-
idential Zip Code of the individual is used for making de-
cisions such as granting a loan. Although Zip Code is ap-
parently a neutral attribute, it correlates with race due to the
racial composition of residential areas. Thus, the use of Zip
Code may indirectly lead to racial discrimination.
Discrimination discovery and removal from historical data

has received an increasing attention over the past few years in
data science [Hajian and Domingo-Ferrer, 2013; Kamiran and
Calders, 2012; Ruggieri et al., 2010; Romei and Ruggieri,
2014; Feldman et al., 2015]. Many approaches have been
proposed to deal with both direct and indirect discrimination
but significant issues exist. For discrimination discovery, the
difference in decisions across the protected and non-protected
groups is a combined (not necessarily linear) effect of direct
discrimination, indirect discrimination, and explainable effect
that should not be considered as discrimination (e.g., the dif-
ference in average income of females and males caused by
their different working hours per week). However, existing
methods cannot explicitly and correctly identify the three dif-
ferent effects when measuring discrimination. For example,
the classic metrics risk difference, risk ratio, relative chance,
odds ratio, etc. [Romei and Ruggieri, 2014] treat all the dif-
ference in decisions as discrimination. [Žliobaitė et al., 2011]
realized the explainable effect but failed to distinguish the ef-
fects of direct and indirect discrimination. For discrimination
removal, a general requirement is to preserve the data util-
ity while achieving non-discrimination. As we shall show in
the experiments, a crude method that totally removes all con-
nections between the protected attribute and decision (e.g., in
[Feldman et al., 2015]) can eliminate discrimination but may
suffer significant utility loss. To maximize the preserved data
utility, it is necessary to first accurately measure the discrim-
inatory effects and then precisely remove them.
The causal modeling based discrimination detection has

been proposed most recently [Zhang et al., 2016c; 2016b]
for improving the correlation based approaches. However,
these work also do not tackle indirect discrimination. In
this paper, we develop a framework for discovering and re-
moving both direct and indirect discrimination based on the
causal network. A causal network is a directed acyclic graph
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Figure 1: The toy model.

(DAG) widely used for causal representation, reasoning and
inference [Pearl, 2009], where causal effects are carried by
the causal paths that trace arrows pointing from the cause
to the effect. Using this model, direct and indirect discrim-
ination can be respectively captured by the causal effects
of the protected attribute on the decision transmitted along
different causal paths. To be specific, direct discrimination
is modeled as the causal effect transmitted along the direct
path from the protected attribute to the decision. Indirect
discrimination, on the other hand, is modeled as the causal
effect transmitted along other causal paths that contain any
unjustified attribute. For example, consider a toy model of
a loan application system shown in Figure 1. Assume that
we treat Race as the protected attribute, Loan as the deci-
sion, and ZipCode as the unjustified attribute that triggers
redlining. Direct discrimination is then transmitted along
path Race→ Loan, and indirect discrimination is transmitted
along path Race → ZipCode → Loan. Assume that the use
of Income can be objectively justified as it is reasonable to
deny a loan if the applicant has low income. In this case, path
Race → Income → Loan is explainable, which means that
part of the difference in loan issuance across different race
groups can be explained by the fact that some race groups in
the dataset tend to be under-paid.
Our analysis shows that measuring discrimination based on

the causal network requires to measure the causal effect trans-
mitted along certain causal paths. To this end, we employ
the technique of the path-specific effect [Avin et al., 2005;
Shpitser, 2013]. We define direct/indirect discrimination as
different path-specific effects, and show how to measure them
using the observational data. Based on that, we propose an
effective algorithm for discovering direct/indirect discrimi-
nation, as well as an algorithm for precisely removing both
types of discrimination while retaining good data utility. The
experiments using the real dataset show that our approaches
are effective in discovering and removing discrimination.

2 Preliminary Concepts
A causal network is a DAG G = (V,A) where V is a set of
nodes and A is a set of arcs. Each node in the network repre-
sents an attribute. Each arc, denoted by an arrow→ pointing
from the cause to the effect represents the direct causal rela-
tionship. Throughout the paper, we denote an attribute by an
uppercase alphabet, e.g., X; denote a subset of attributes by a
bold uppercase alphabet, e.g., X. We denote a domain value
of attribute X by a lowercase alphabet, e.g., x; denote a value
assignment of attributes X by a bold lowercase alphabet, e.g.,
x. For a node X, its parents are denoted by Pa(X), and its
children are denoted by Ch(X). Each node is associated with
a conditional probability table (CPT), i.e., P(x|Pa(X)). The
joint distribution over all attributes P(v) can be computed us-

ing the factorization formula [Koller and Friedman, 2009]

P(v) =
∏
V∈V

P(v|Pa(V)), (1)

where P(v|Pa(V)) is the observational distribution.
In the causal network, measuring causal effects is facili-

tated with the do-calculus [Pearl, 2009], which simulates the
physical interventions that force some attributesX to take cer-
tain values x. The post-intervention distributions represent
the effect of the intervention. Formally, the intervention that
sets the value of X to x is denoted by do(X = x). The post-
intervention distribution of all other attributes Y = V\X, i.e.,
P(Y = y|do(X = x)) or simply P(y|do(x)), can be computed
by the truncated factorization formula [Pearl, 2009]

P(y|do(x)) =
∏
Y∈Y

P(y|Pa(Y))δX=x, (2)

where δX=x means assigning attributes in X involved in the
term ahead with the corresponding values in x. Specifically,
the post-intervention distribution of a single attribute Y given
an intervention on a single attribute X is given by

P(y|do(x)) =
∑

V\{X,Y},Y=y

∏
V∈V\{X}

P(v|Pa(V))δX=x, (3)

where the summation is a marginalization that traverses all
value combinations of V\{X,Y}.
By using the do-calculus, the total causal effect of X on

Y is defined in Definition 1 [Pearl, 2009]. Note that in this
definition, the effect of the intervention is transmitted along
all causal paths from the cause X to the effect Y .

Definition 1 (Total causal effect) The total causal effect
measures the effect of the change of X from x1 to x2 on Y = y
transmitted along all causal paths from X to Y. It is given by

TE(x2, x1) = P(y|do(x2)) − P(y|do(x1)).

The path-specific effect is an extension to the total causal
effect in the sense that the effect of the intervention is trans-
mitted only along a subset of causal paths from X to Y [Avin
et al., 2005]. Denote a subset of causal paths by π. The π-
specific effect considers a counterfactual situation where the
effect of X on Y with the intervention is transmitted along π,
while the effect of X on Y without the intervention is trans-
mitted along paths not in π. We denote by P(y | do(x2|π)) the
distribution of Y after an intervention of changing X from x1
to x2 with the effect transmitted along π. Then, the π-specific
effect of X on Y is described as follows.

Definition 2 (Path-specific effect) Given a path set π, the π-
specific effect measures the effect of the change of X from x1
to x2 on Y = y transmitted along π. It is given by

SEπ(x2, x1) = P(y | do(x2|π)) − P(y | do(x1)).

The authors in [Avin et al., 2005] have given the condition
under which the path-specific effect can be estimated from the
observational data, known as the recanting witness criterion.

Definition 3 (Recanting witness criterion) Given a path
set π, let Z be a node in G such that: 1) there exists a path
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Figure 2: The recanting witness criterion satisfied.

from X to Z which is a segment of a path in π; 2) there ex-
ists a path from Z to Y which is a segment of a path in π; 3)
there exists another path from Z to Y which is not a segment
of any path in π. Then, the recanting witness criterion for the
π-specific effect is satisfied with Z as a witness.

Figure 2 shows an example where π = {X → Z1 → Z2 →
Y}. It is easy to see that the recanting witness criterion is
satisfied with Z1 as the witness.

Theorem 1 (Identifiability) The π-specific effect can be es-
timated from the observational data if and only if the recant-
ing witness criterion for the π-specific effect is not satisfied.

If and only if the recanting witness criterion is not satisfied,
the π-specific effect SEπ(x2, x1) can be computed from the
observational data, as shown in Theorem 2 [Shpitser, 2013].

Theorem 2 When the recanting witness criterion is not sat-
isfied, the π-specific effect SEπ(x2, x1) can be computed in
following steps. First, express P(y|do(x1)) as the truncated
factorization formula according to Equation (3). Second, to
compute P(y | do(x2|π)), divide the children of X into two sets
Sπ and S̄π, i.e., Ch(X) = Sπ ∪ S̄π. Let Sπ contains X’s each
child S where arc X → S is a segment of a path in π; let S̄π
contains X’s each child S where either S is not included in
any path from C to E, or arc X → S is a segment of a path
not in π. Finally, replace values x1 with x2 for the terms cor-
responding to nodes in Sπ, and keep values x1 unchanged for
the terms corresponding to nodes in S̄π.
Note that the above computation requires Sπ ∩ S̄π = ∅.

Theorem 1 is reflected here in the sense that: Sπ ∩ S̄π , ∅ if
and only if the recanting witness criterion for the π-specific
effect is satisfied.

3 Modeling Direct and Indirect
Discrimination as Path-Specific Effects

Consider a historical dataset D that contains a group of tu-
ples, each of which describes the profile of an individual.
Each tuple is specified by a set of attributes V, including the
protected attributes, the decision, and the non-protected at-
tributes. Among the non-protected attributes, assume there
is a set of attributes that cannot be objectively justified if
used in the decision making process, which we refer to as the
redlining attributes denoted by R. For ease of presentation,
we assume that there is only one protected/decision attribute
with binary values. We denote the protected attribute by C
associated with two domain values c− (e.g., female) and c+
(e.g., male); denote the decision by E associated with two
domain values e− (i.e., negative decision) and e+ (i.e., posi-
tive decision). Our approach can extend to handling multiple
domain values of C and even multiple Cs. We assume that
a causal network G is built to correctly represent the causal
structure of dataset D. Many algorithms have been proposed

to learn the causal network from data [Spirtes et al., 2000;
Neapolitan and others, 2004; Colombo and Maathuis, 2014;
Kalisch and Bühlmann, 2007]. We also make a reasonable as-
sumption that C has no parent in G, as the protected attribute
is always an inherent nature of an individual.
Discrimination is the causal effect ofC on E. As discussed,

the causal effect of C on E includes direct, indirect discrimi-
natory effects and the explainable effects. To distinguish the
different effects, we model them as the causal effects transmit-
ted along different paths. For direct discrimination, we con-
sider the causal effect transmitted along the direct path from
C to E, i.e., C → E. Define πd as the path set that contains
only C → E. Then, the above causal effect that is caused by
the change ofC from c− to c+ is given by the πd-specific effect
SEπd (c

+, c−). For a better understanding, the physical mean-
ing of SEπd (c

+, c−) can be explained as the expected change
in decisions of individuals from protected group c−, if the de-
cision makers are told that these individuals were from the
other group c+. When applied to the example in Figure 1, it
means the expected change in loan approval of applications is
actually from the disadvantage group (e.g., black), when the
bank is instructed to treat the applicants as from the advan-
tage group (e.g., white). We can see that the πd-specific ef-
fect matches the definition of direct discrimination in law and
hence is an appropriate measure for direct discrimination.
Similarly, for indirect discrimination, we consider the

causal effect transmitted along all the indirect paths from C
to E that contain the redlining attributes. Given the set of
redlining attributes R, we define πi as the path set that con-
tains all the causal paths from C to E which pass through
R, i.e., each of the paths includes at least one node in R.
Thus, the above causal effect is given by the πi-specific ef-
fect SEπi(c

+, c−). The physical meaning of SEπi(c
+, c−) is the

expected change in decisions of individuals from protected
group c−, if the values of the redlining attributes in the pro-
files of these individuals were changed as if they were from
the other group c+. When applied to the example in Figure 1,
it means the expected change in loan approval of the disad-
vantage group if they had the same racial makeups shown in
the Zip Code as the advantage group. The πi-specific effect
also matches the definition of indirect discrimination and is
appropriate for measuring indirect discrimination.
Therefore, we have the following theorem.

Theorem 3 The effect of direct discrimination can be cap-
tured by the πd-specific effect SEπd (c

+, c−), and the effect of
indirect discrimination can be captured by the πi-specific ef-
fect SEπi(c

+, c−).

Based on the above path-specific effect metrics, we pro-
pose the criterion for direct and indirect discrimination. We
define that direct discrimination against protected group c−
exists if SEπd (c

+, c−) > τ, where τ > 0 is a use-defined
threshold for discrimination depending on the law. For in-
stance, the 1975 British legislation for sex discrimination sets
τ = 0.05, namely a 5% difference. Similarly, given the redlin-
ing attributesR, we define that indirect discrimination against
protected group c− exists if SEπi(c

+, c−) > τ. To avoid re-
verse discrimination, we do not specify which group is the
protected group. As a result, we give the following criterion.
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Theorem 4 Direct discrimination exists if SEπd (c
+, c−) > τ

or SEπd (c
−, c+) > τ holds, and indirect discrimination exists

if SEπi(c
+, c−) > τ or SEπi(c

−, c+) > τ holds.

The following theorem shows how to compute SEπd (c
+, c−)

and SEπi(c
+, c−) from the observational data.

Theorem 5 The πd-specific effect SEπd (c
+, c−) is given by

SEπd (c
+, c−) =

∑
V\{C,E}

(
P(e+|c+, Pa(E)\{C})

∏
V∈V\{C,E}

P(v|Pa(V))δC=c−
)
− P(e+|c−).

(4)

For the πi-specific effect SEπi(c
+, c−), divide C’s children into

Sπi and S̄πi . If Sπi ∩ S̄πi = ∅, then SEπi(c+, c−) is given by

SEπi(c
+, c−) =

∑
V\{C}

( ∏
G∈Sπi

P(g|c+, Pa(G)\{C})

∏
H∈S̄πi

P(h|c−, Pa(H)\{C})
∏

O∈V\({C}∪Ch(C))
P(o|Pa(O))δC=c−

)
− P(e+|c−).

(5)

The proof directly follows Theorem 2 and the trun-
cated factorization Equation (2). Theorem 5 shows that
SEπd (c

+, c−) can always be computed from the observational
data but SEπi(c

+, c−) may not. This is because the recant-
ing witness criterion for the πd-specific effect is guaranteed
to be not satisfied, but the recanting witness criterion for
the πi-specific effect might be satisfied. The situation where
SEπi(c

+, c−) cannot be computed is referred to as the uniden-
tifiable situation. How to deal with this situation will be dis-
cussed later in the next section.
The following two propositions further show two proper-

ties of the path-specific effect metrics.

Proposition 1 If path set π contains all causal paths from C
to E, then we have

SEπ(c+, c−) = TE(c+, c−) = P(e+|c+) − P(e+|c−).
The proof can be directly obtained from Definition 2, Defini-
tion 1 and Equation (3). P(e+|c+) − P(e+|c−) is known as the
risk difference [Romei and Ruggieri, 2014] widely used for
discrimination measurement in the anti-discrimination litera-
ture. Therefore, the path-specific effect metrics can be con-
sidered as a significant extension to the risk difference for ex-
plicitly distinguishing the discriminatory effects of direct and
indirect discrimination from the total causal effect.

Proposition 2 For any path sets πd and πi, we do not neces-
sarily have SEπd (c

+, c−) + SEπi(c
+, c−) = SEπd∪πi(c

+, c−).

The proof can be obtained from Definition 2 and Theorem
2. This implies that there might not be a linear connection
between direct and indirect discrimination.

4 Discrimination Discovery and Removal
4.1 Discrimination Discovery
We propose a Path-Specific based Discrimination Discovery
(PSE-DD) algorithm based on Theorem 4. It first builds the

Algorithm 1: PSE-DD
Input : DatasetD, protected attribute C, decision attribute E,

redlining attributes R, user-defined threshold τ.
Output: Direct/indirect discrimination judged, judgei.

1 G = buildCausalNetwork(D);
2 judged = judgei = f alse;
3 Compute SEπd (·) according to Equation (4);
4 if SEπd (c

+, c−) > τ ∥ SEπd (c−, c+) > τ then
5 judged = true;

6 Call subroutine [Sπi ,S̄πi ] = DivideChildren;
7 if Sπi ∩ S̄πi , ∅ then
8 judgei = unknown;
9 return [ judged, judgei];

10 Compute SEπi (·) according to Equation (5);
11 if SEπi (c+, c−) > τ ∥ SEπi (c−, c+) > τ then
12 judgei = true;

13 return [ judged, judgei];

causal network from the historical dataset, and then computes
SEπd (·) and SEπi(·) according to Equations (4) and (5). The
procedure of the algorithm is shown in Algorithm 1.
The complexity of line 6 depends on how to identify Sπi

and S̄πi . A straightforward method is to find all paths in πi,
and forC’s each child S check whetherC → S is contained in
any path in πi. However, finding all paths between two nodes
in a DAG has an exponential complexity. In our algorithm, we
examine the existence of a path from S to E passing through
R. It can be easily observed that, a node S belongs to Sπi if
and only if there exists a path from S to E passing through
R (a path from S to E passing through R also includes the
path where S itself belongs to R). Similarly, S belongs to
S̄πi if and only if there does not exist a path from S to E
passing through R. The subroutine of finding Sπi and S̄πi is
presented in Algorithm 2, which checks whether there exists
a node R ∈ R so that R is S ’s decedent and E is R’s decedent.
Since the decedents of all the nodes involved in the algorithm
can be obtained by traversing the network starting from C
within the time of O(|A|), the computational complexity of
the subroutine is given by O(|V|2 + |A|).

Algorithm 2: subroutine DivideChildren
1 Sπi = ∅, S̄πi = ∅;
2 foreach S ∈ Ch(C)\{E} do
3 foreach R ∈ R do
4 if R ∈ De(S ) ∪ {S } && E ∈ De(R) then
5 Sπi = Sπi ∪ {S };
6 else
7 S̄πi = S̄πi ∪ {S };

8 return [Sπi ,S̄πi ];

The complexity of PSE-DD also depends on the complex-
ities of building the causal network and computing the path-
specific effect according to Equation (4) or (5). Many re-
searches have been devoted to improving the performance of
network construction [Kalisch and Bühlmann, 2007; Aliferis
and others, 2010] and probabilistic inference in causal net-
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works [Heckerman and Breese, 1994; 1996]. The complexity
analysis can be found in these related literature.

4.2 Discrimination Removal
When direct or indirect discrimination is discovered for a
dataset, the discriminatory effects need to be removed before
the dataset is released for predictive analysis. A naive ap-
proach would be simply deleting the protected attribute from
the dataset, which often incur significant utility loss. In ad-
dition, this approach can eliminate direct discrimination, but
indirect discrimination still presents.
We propose a Path-Specific Effect based Discrimination

Removal (PSE-DR) algorithm to remove both direct and indi-
rect discrimination. The general idea is to modify the causal
network and then use it to generate a new dataset. Specifi-
cally, we modify the CPT of E, i.e., P(e|Pa(E)), to obtain a
new CPT P′(e|Pa(E)), so that the direct and indirect discrim-
inatory effects are below the threshold τ. To maximize the
utility of the modified dataset, we minimize the Euclidean
distance between the joint distribution of the original causal
network (denoted by P(v)) and the joint distribution of the
modified causal network (denoted by P′(v)). As a result, we
obtain the following quadratic programming problem with
P′(e|Pa(E)) as the variables.

minimize
∑
V

(
P′(v) − P(v)

)2
subject to SEπd (c

+, c−) ≤ τ, SEπd (c
−, c+) ≤ τ,

SEπi(c
+, c−) ≤ τ, SEπi(c

−, c+) ≤ τ,
∀Pa(E), P′(e−|Pa(E)) + P′(e+|Pa(E)) = 1,
∀Pa(E), e, Pr′(e|Pa(E)) ≥ 0,

where P′(v) and P(v) are computed according to Equation (1)
using P′(e|Pa(E)) and P(e|Pa(E)) respectively, and SEπd (·)
and SEπi(·) are computed according to Equations (4) and (5)
respectively using P′(e|Pa(E)). The optimal solution is ob-
tained by solving the quadratic programming problem. After
that, the joint distribution of the modified causal network is
computed using Equation (1), and the new dataset is gener-
ated based on the joint distribution. The procedure of PSE-
DR is shown in Algorithm 3, where lines 1-2 deal with the
unidentifiable situation discussed in the next subsection.

Algorithm 3: PSE-DR
1 if Sπi ∩ S̄πi , ∅ then
2 Call subroutine NetworkPreprocess;

3 Obtain the modified CPT of E by solving the quadratic
programming problem;

4 Calculate P∗(v) according to Equation (1) using the modified
CPTs;

5 GenerateD∗ based on P∗(v);
6 returnD∗;

The complexity of PSE-DR depends on the complexity of
solving the quadratic programming problem. It can be eas-
ily shown that, the coefficients of the quadratic terms in the
objective function form a positive definite matrix. Accord-
ing to [Kozlov et al., 1980], the quadratic programming can

be solved in polynomial time. Finally, it is also worth noting
that our approach can be easily extended to handle the situa-
tion where either direct or indirect discrimination needs to be
removed.
Dealing with Unidentifiable Situation As stated in The-

orem 1, when the recanting witness criterion is satisfied, the
πi-specific effect cannot be estimated from the observational
data. However, the structure of the recanting witness criterion
implies potential indirect discrimination as there exist causal
paths from C to E passing through the redlining attributes.
From a practical perspective, it is meaningful to ensure non-
discrimination while preserving reasonable data utility even
though the discriminatory effect cannot be accurately mea-
sured. In this case, we preprocess the network as follows.
Recall that Sπi ∩ S̄πi , ∅ if and only if the recanting witness
criterion is satisfied. For each node S ∈ Sπi ∩ S̄πi , we cut off
all the causal paths from S to E that pass through R, so that
S would not belong to Sπi any more. Then, we must have
Sπi ∩ S̄πi = ∅ after the modification. To cut off the paths, we
focus on the arc from E’s each parent Q, i.e., Q→ E. If these
exists a path from S to Q passing through R, then arc Q→ E
is removed from the network. The pseudo-code of this pro-
cedure is shown below, which can be added before line 1 in
Algorithm 3 to deal with this situation.

Algorithm 4: subroutine NetworkPreprocess
1 foreach S ∈ Sπi ∩ S̄πi do
2 foreach Q ∈ Pa(E) do
3 foreach R ∈ R do
4 if R ∈ De(S ) && Q ∈ De(R) then
5 Remove arc Q→ E from G;
6 Break;

5 Experiments
In this section, we conduct experiments using the Adult
dataset [Lichman, 2013]. We compare our algorithms with
the local massaging (LMSG) and local preferential sampling
(LPS) algorithms proposed in [Žliobaitė et al., 2011] and dis-
parate impact removal algorithm (DI) proposed in [Feldman
et al., 2015; Adler et al., 2016]. The causal networks are con-
structed and presented by utilizing an open-source software
TETRAD [Glymour and others, 2004]. We employ the origi-
nal PC algorithm [Spirtes et al., 2000] and set the significance
threshold 0.01 for conditional independence testing in causal
network construction. The quadratic programming is solved
using CVXOPT [Dahl and others, 2006].

5.1 Discrimination Discovery
The Adult dataset consists of 48,842 tuples with 11 attributes
including age, education, sex, occupation, income,
marital status etc. Due to the sparse data issue, we bi-
narize each attribute’s domain values into two classes to re-
duce the domain sizes. For experiment details including the
causal network please refer to [Zhang et al., 2016a]. We
treat sex as the protected attribute, income as the decision,
and marital status as the redlining attribute. We set the
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Table 1: Discrimination in the modified data (τ = 0.05), and
comparison of utility with varied τ values.

Remove Algorithm τ
PSE-DR DI LMSG LPS 0.025 0.05 0.075 0.1

Direct 0.013 0.001 -0.142 -0.142 0.008 0.012 0.019 0.024
Indirect 0.049 0.050 0.288 0.174 0.024 0.049 0.074 0.100
χ2(×104) 1.038 4.964 1.924 1.292 1.247 1.038 1.029 0.819

threshold τ as 0.05. By computing the path-specific effects,
we obtain that SEπd (c

+, c−) = 0.025 and SEπi(c
+, c−) = 0.175,

which indicate no direct discrimination but significant indi-
rect discrimination against females according to our criterion.
In [Žliobaitė et al., 2011], it has been shown that each of the
attributes relationship, age and working hours can ex-
plain some of the discrimination. However, no conclusion
regarding direct/indirect discrimination is drawn.

5.2 Discrimination Removal
We run the removal algorithm PSE-DR to remove discrimi-
nation from the dataset, and then run the discovery algorithm
PSE-DD to further examine whether discrimination is truly
removed in the modified dataset. For comparison, we in-
clude removal algorithms from previous works: LMSG, LPS
and DI. The discriminatory effects of the modified dataset are
shown in Table 1 (left). As can be seen, our method PSE-
DR completely removes both direct and indirect discrimina-
tion from the data. In addition, PSE-DR produces relatively
small data utility loss in term of χ2. For LMSG and LPS,
indirect discrimination is not removed, and direct discrimina-
tion seems to be over removed. The DI algorithm provides
a parameter λ to indicate the amount of discrimination to be
removed, where λ = 0 represents no modification and λ = 1
represents full discrimination removal. However, λ has no
direct connection with the threshold τ. In our experiments,
we execute DI multiple times with different λs and report the
one that is closest to achieve τ = 0.05. Although DI indeed
removes direct and indirect discrimination, its data utility is
far more worse than PSE-DR, implying that it removes many
information unrelated to discrimination.
We then examine how the data utility in term of χ2 varies

with different thresholds τ for PSE-DR. We change the value
of τ from 0.025 to 0.1. From Table 1 (right) we can see that
less utility loss is incurred when larger τ value is used. This
observation is consistent with our analysis since the larger the
value of τ, the more relaxed the constraints in PSE-DR.
We also examine whether the predictive models built from

the dataset modified by PSE-DR incur discrimination in de-
cision making. We divide the original dataset into the train-
ing and testing datasets, and remove discrimination from the
training dataset to obtain the modified training dataset. Then,
we build the predictive models from the modified training
dataset, and use them to make predictive decisions over the
testing data. Four classifiers, logistic regression (LR), deci-
sion tree (DT), random forest (RF) and SVM, are used for pre-
diction with five-fold cross-validation. Finally, we run PSE-
DR to examine whether the predictions for the testing data
contain discrimination. The prediction accuracy using both
original and modified training dataset are reported as well.

Table 2: Discrimination in prediction. (τ = 0.05)
LR DT RF SVM

Direct 0.045 0.023 0.022 0.023
Indirect 0.047 0.042 0.050 0.041

Accuracy(%) Original 81.70 81.77 81.81 81.78
Modified 81.30 80.55 80.56 80.54

The results are shown in Table 2. As can be seen, the predic-
tions of all classifiers do not incur direct or indirect discrimi-
nation, with the accuracy slightly decreased.

6 Related Work
In the literature, classification rule-based methods such as
elift [Pedreshi et al., 2008] and belift [Mancuhan and Clifton,
2014] were proposed to represent certain discrimination pat-
terns. [Luong et al., 2011; Zhang et al., 2016c] dealt with
the individual discrimination by finding a group of similar
individuals. [Žliobaitė et al., 2011] proposed conditional dis-
crimination which considers some part of the discrimination
may be explainable by certain attributes. None of these work
explicitly identifies direct discrimination, indirect discrimina-
tion, and explainable effects. In [Bonchi et al., 2017], the
authors proposed a framework based on the Suppes-Bayes
causal network and developed several random-walk-based
methods to detect different types of discrimination. However,
it is unclear how the number of random walks is related to
practical discrimination metrics. In addition, the construction
of the Suppes-Bayes causal network is impractical with the
large number of attribute-value pairs.
Proposed methods for discrimination removal are either

based on data preprocessing [Kamiran and Calders, 2012;
Žliobaitė et al., 2011] or algorithm tweaking [Kamiran et al.,
2010; Calders and Verwer, 2010; Kamishima et al., 2011].
In a recent work [Feldman et al., 2015], the authors first
ensure no direct discrimination by completely removing the
protected attribute C from data, and then modify all the non-
protected attributes to ensure that C cannot be predicted from
the non-protected attributes. As a result, indirect discrimina-
tion is removed since the decision E has no connection withC
via the non-protected attributes. However, as shown in our ex-
periment results, this approach suffers significant utility loss
as it removes all the connections between C and E.

7 Conclusions
In this paper, we studied the problem of discovering both di-
rect/indirect discrimination from historical data, and remov-
ing them before performing predictive analysis. We made use
of the causal network to capture the causal structure of the
data, and modeled direct and indirect discrimination as dif-
ferent path-specific effects. Based on that, we proposed the
discovery algorithm PSE-DD to discover both direct and in-
direct discrimination, and the removal algorithm PSE-DR to
remove them. The experiments using the real dataset show
that, our approach can ensure that the modified data dose not
contain any type of discrimination while incurring small util-
ity loss. As a result, the predictive models built from the mod-
ified data are not subject to discrimination.
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