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ABSTRACT
Discrimination discovery and prevention/removal are increasingly

important tasks in data mining. Discrimination discovery aims to

unveil discriminatory practices on the protected attribute (e.g., gen-

der) by analyzing the dataset of historical decision records, and

discrimination prevention aims to remove discrimination by modi-

fying the biased data before conducting predictive analysis. In this

paper, we show that the key to discrimination discovery and preven-

tion is to find the meaningful partitions that can be used to provide

quantitative evidences for the judgment of discrimination. With

the support of the causal graph, we present a graphical condition

for identifying a meaningful partition. Based on that, we develop a

simple criterion for the claim of non-discrimination, and propose

discrimination removal algorithms which accurately remove dis-

crimination while retaining good data utility. Experiments using

real datasets show the effectiveness of our approaches.

CCS CONCEPTS
• Information systems → Data mining; • Applied comput-
ing→ Law, social and behavioral sciences; •Mathematics of
computing → Causal networks;

KEYWORDS
discrimination discovery and removal, causal graph

1 INTRODUCTION
Discrimination discovery and prevention/removal has been an ac-

tive research area recently [9, 12, 16, 28, 29, 39]. Discrimination

refers to unjustified distinctions of individuals based on their mem-

bership in a certain group. Federal Laws and regulations (e.g., Fair

Credit Reporting Act or Equal Credit Opportunity Act) prohibit dis-

crimination on several grounds, such as gender, age, marital status,

sexual orientation, race, religion or belief, and disability or illness,

which are referred to as the protected attributes. Different types
of discrimination have been introduced, which can be generally

categorized as direct and indirect discrimination [12, 28]. Direct

discrimination occurs when individuals are treated less favorably

in comparable situations explicitly due to their membership in a

protected group; indirect discrimination refers to an apparently

neutral practice which results in an unfair treatment of a protected
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Table 1: Summary statistics of Example 1.

Test score L H

Gender Female Male Female Male

Major CS EE CS EE CS EE CS EE

No. applicants 450 150 150 450 300 100 100 300

Admission rate 20% 40% 20% 40% 50% 70% 50% 70%

25% 35% 55% 65%

Table 2: Summary statistics of Example 2.

Major CS EE

Gender Female Male Female Male

Test score L H L H L H L H

No. applicants 450 300 150 100 600 300 200 100

Admission rate 30% 50% 36% 40% 40% 60% 45% 50%

38% 38% 47% 47%

group. In this paper, we focus on the problem of discrimination

discovery and prevention on direct discrimination. In the following,

we simply say discrimination for direct discrimination.

For a quantitative measurement of discrimination, a general

legal principle is to measure the difference in the proportion of

positive decisions between the protected group and non-protected

group [28]. Ensuring non-discrimination in a released data is not

trivial. Simply considering the difference measured at the whole

dataset level fails to take into account the part of differences that

are explainable by other attributes, and removing all the differences

will result in reverse discrimination [32]. Thus, directly removing

the discrimination at the whole dataset level or conditioning on an

arbitrary attribute and then removing the difference within each

produced subpopulation cannot achieve true discrimination-free.

It is imperative to determine whether a partition is meaningful

for measuring and removing discrimination and then to remove

discrimination from all meaningful partitions.

Typically, given a dataset from an organization, a partition is de-

termined by a subset of attributes and a subpopulation is specified

by a value assignment to the attributes. We demonstrate that only

meaningful partitions can be used to provide quantitative evidences

for the judgment of discrimination. Using inappropriate partitions

will result in misleading conclusions. Consider a toy model for a

university admission system that contains four attributes: gender,
major, test_score, and admission, where gender is the protected
attribute, and admission is the decision. We assume there is no cor-

relation between gender and test_score. The summary statistics

of the admission rate is shown in Table 1. It can be observed that

the average admission rate is 37% for females and 46% for males.

It is already known that the judgment of discrimination cannot be

made simply based on the average admission rates in the whole

population and further partitioning is needed. If we partition the
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data conditioning on test_score as shown in the table, there exist

significant differences (from either 35%−25% for L or from 65%−55%

for H) between the admission rates of females and males in the two

subpopulations. However, intuitively test_score should not be

used for partitioning the data alone as it is uncorrelated with the

protected attribute. In fact, this result is indeed misleading, since if

we carefully examine the admission rates for each major or each
combination {major, test_score}, it shows no bias in any of the

subpopulations. Therefore, it would be groundless if a plaintiff tries

to file a lawsuit of discrimination against the university by demon-

strating admission rate difference either in the whole population

or based on the partitioning on test_score.
Moreover, as there are often multiple meaningful partitions, ex-

amining one partition showing no bias does not guarantee no bias

based on other partitions. Consider a different example on the same

toy model shown in Table 2. The average admission rate now be-

comes 43% equally for both females and males. Further conditioning

on major, which appears to be a reasonable partition, still shows

that females and males have the same chance to be admitted in the

two subpopulations. However, when partitioning the data based

on the combination {major, test_score}, significant differences
(≥ 5%) between the admission rates of females and males present.

The difference among applicants applied to either a major with

test scores of L is clear evidence of discrimination against females.

The difference among applicants applied to either a major with test

scores of H can be treated as reverse discrimination against males,

or tokenism where some strong male applicants are purposefully

rejected to refute a claim of discrimination against females. In this

case, the data publisher cannot make a non-discrimination claim.

The above examples show that, any quantitative evidence of

discrimination must be measured under a meaningful partition.

In addition, to ensure non-discrimination, we must show no bias

for all meaningful partitions. In this paper, we make use of the

causal graphs to identify meaningful partitions. A causal graph is a

probabilistic graph model widely used for causation representation

and inference [30]. As stated in [10], discrimination claims usually

require plaintiffs to demonstrate a causal connection between the

decision and the protected attribute. We then develop discrimina-

tion discovery and removal algorithms. Our results include: 1) a

graphical condition for identifying meaningful partitions, which are

defined by subsets of attributes called the block sets; 2) an efficient

discrimination detection algorithm that only needs to examine one

single block set but ensures non-discrimination across all mean-

ingful partitions; and 3) discrimination removal algorithms which

achieve non-discrimination while maximizing the data utility. Our

approaches can be used to find quantitative evidences of discrimi-

nation for plaintiffs, or to achieve a non-discrimination guarantee

for data owners. The experiments using real datasets show that

our proposed approaches are effective in discovering and removing

discrimination whereas previous works on discrimination removal

cannot achieve non-discrimination in all meaningful partitions.

2 MODELING DISCRIMINATION USING
CAUSAL GRAPH

Consider a dataset D which may contain discrimination against a

certain protected group. Each individual inD is specified by a set of

gender admission

major

test score

Figure 1: Causal graph of an example university admission
system.

attributes V, which includes the protected attribute (e.g., gender),
the decision attribute (e.g., admission), and the non-protected at-

tributes (e.g., major). Throughout this paper, we use an uppercase

alphabet, e.g., X , to represent an attribute; a bold uppercase alpha-

bet, e.g., X, to represent a subset of attributes, e.g., {gender, major}.
We use a lowercase alphabet, e.g., x , to represent a domain value of

attribute X ; a bold lowercase alphabet, e.g., x, to represent a value

assignment to X. We denote the decision attribute by E, associated
with domain values of positive decision e+ and negative decision

e−; denote the protected attribute byC , associated with two domain

values c− (e.g., female) and c+ (e.g., male).

For the quantitative measurement of discrimination, we use risk
difference [28] to measure the difference in the the proportion of

positive decisions between the protected group and non-protected

group. Formally, by assuming c− is the protected group, risk dif-

ference is defined as ∆P |s = Pr(e+ |c+, s) − Pr(e+ |c−, s), where s
denotes a specified subpopulation produced by a partition S. We

say that the protected group is treated less favorably within subpop-

ulation s if ∆P |s ≥ τ , where τ > 0 is a threshold for discrimination

depending on law. For instance, the 1975 British legislation for

sex discrimination sets τ = 0.05, namely a 5% difference. To avoid

reverse discrimination, we do not specify which group is the pro-

tected group. Thus, we use |∆P |s | to deal with both scenarios where

either c− or c+ is designated as the protected group.

A DAG G is represented by a set of nodes and a set of arcs.

Each node represents an attribute in D. Each arc, denoted by an

arrow→ in the graph, connects a pair of nodes where the node

emanating the arrow is called the parent of the other node. The DAG

is assumed to satisfy the local Markov condition, i.e., each node X is

independent of all its non-descendants conditioning on its parents

Par(X ). Each node is associated with a conditional probability table

(CPT) specified by Pr(X |Par(X )). The joint probability distribution

can be computed using the factorization formula [19]:

Pr(v) =
∏
X ∈V

Pr(x |Par(X )). (1)

Spirtes et al. [30] have shown that, when causal interpretations are

given to the DAG, i.e., each node’s parents are this node’s direct

causes, the DAG represents a correct causal structure of the un-

derlying data. In particular, the causation among the attributes are

encoded in the missing arcs in the DAG: if there is no arc between

two nodes in G, then it represents no direct causal effect between

the two attributes in D. The DAG with the causal interpretation

is called the causal graph. For example, the causal graph of the

illustrative examples in the introduction is shown in Figure 1.
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In this paper, we assume that we have a causal graph G that

correctly captures the causal structure of the dataset. We also as-

sume that the arc C → E is present in G, since the absence of the

arc represents a zero direct effect of C on E. A causal DAG can

be learned from data and domain knowledge. In the past decades,

many algorithms have been proposed to learn causal DAGs from

data [6, 15, 24, 30]. In our implementation, we use the original PC

algorithm [30] to build the causal graph.

2.1 Identifying Meaningful Partition
Discrimination occurs due to different decisions made explicitly

based on the membership in the protected group. As stated, all dis-

crimination claims require plaintiffs to demonstrate the existence

of a causal connection between the decision and the protected at-

tribute. Given a partition S, for ∆P |s to capture the discriminatory

effect and be considered as a quantitative evidence of discrimi-

nation, one needs to prove that this difference is indeed caused

by the protected attribute. In other words, the partition S must

guarantee that the influence from the protected attribute C to the

decision E is only transmitted along C → E and all the influences

from C to E through all other paths are shielded/blocked given

the partition value s. We first introduce the well-known concept

of d-separation in causal modeling and then present our result of

identifying meaningful partitions.

Definition 2.1 (d-Separation [30]). Consider a dataset D and its

represented causal graphG.X,Y andZ are disjoint sets of attributes.

X and Y are d-separated by Z, denoted by (X y Y | Z)G , if and
only if Z blocks all paths from every node in X to every node in Y.
A path p is said to be blocked by Z if and only if

(1) p contains a chain i → m → j or a fork i ← m → j such
that the middle nodem is in Z, or

(2) p contains an collider i →m ← j such that the middle node

m is not in Z and no descendant ofm is in Z.

X and Y are said to be conditionally independent given Z, de-
noted by (X y Y | Z)D , if Pr(x|y, z) = Pr(x|z) holds for all values
x, y, z. With the local Markov condition, the d-separation criterion

in G and the conditional independence relations in D are con-

nected such that, if we have (X y Y | Z)G , then we must have

(X y Y | Z)D . This connection is referred to as the global Markov
condition.

Being facilitated with the d-separation criterion, the following

theorem shows under what conditions a node set B forms a mean-

ingful partition for indeed measuring discrimination of C on E.

Theorem 2.2. Given a causal graph G, a node set B forms a
meaningful partition for measuring discrimination with ∆P |b if and
only if B satisfies: (1) (C y E | B)G′ holds, (2) B contains none of E’s
decedents, where G′ is constructed by deleting arc C → E from G.

Proof. Construct a new DAG G′ by deleting the arc C → E
from G and keeping everything else unchanged. Consider a node

set B such that (C y E | B)G′ , and use B to examine the conditional

independence relations in D. The possible difference between the

causal relationships represented by G′ and G lies merely in the

presence of the direct causal effect ofC on E. Therefore, if there is no
direct causal effect ofC on E inG,G can be considered as equivalent

to G′, which means that we should also obtain (C y E | B)G .
According to the global Markov condition, this entails (C y E |
B)D , i.e., Pr(e+ |c+, b) = Pr(e+ |c−, b) = Pr(e+ |b) for each value

assignment b of B. Thus, if we observe Pr(e+ |c+, b) , Pr(e+ |c−, b),
the difference must be due to a non-zero direct causal effect ofC on

E. This implies that ∆P |b = Pr(e+ |c+, b) − Pr(e+ |c−, b) can be used

to measure the direct causal effect of C on E.
On the other hand, if a node set B does not satisfy (C y E | B)G′ ,

then this conditional dependence between C and E given B that is

not caused by the direct causal effect will also exist in ∆P |b. As a
result, ∆P |b cannot correctly measure the direct causal effect.

In addition, for ∆P |b to correctly measure the direct causal effect,

set B cannot contain any descendant of E even when it satisfies the

requirement (C y E | B)G′ . This is because when conditioning on

E’s descendants, part of the knowledge of E is already given since

the consequences caused by E is known.

Hence, the theorem is proven. �

We call the node set that satisfies the requirement in the above

theorem as the block set. Theorem 2.2 shows that each block set

B forms a meaningful partition on the dataset where the direct

causal effect of C on E within each subpopulation b can be cor-

rectly measured by ∆P |b. On the other hand, for any partition that

is not defined by a block set, the measured differences, which ei-

ther contain spurious influences or have been explained by the

consequences of the decisions, cannot correctly measure the direct

causal effect and hence cannot be used to prove discrimination or

non-discrimination. In practice, if |∆P |b | ≥ τ , it is a quantitative
evidence of discrimination against either c− or c+ for subpopulation
b. Thus, we have the following corollary.

Corollary 2.3. Discriminatory effect is considered to present for
subpopulation b if B is a block set and |∆P |b | ≥ τ , where ∆P |b =
Pr(e+ |c+, b) − Pr(e+ |c−, b).

3 DISCRIMINATION DISCOVERY AND
PREVENTION

3.1 Non-Discrimination Criterion
Now we develop the criterion that ensures non-discrimination for a

dataset. Based on Theorem 2.2, if each block set B is examined and

ensures that |∆P |b | < τ holds for each subpopulation b, we can say

that the dataset is not liable for any claim of direct discrimination.

Otherwise, there exists a subpopulation b of a block set such that

|∆P |b | ≥ τ , which implies that subpopulation b suffers the risk of

being accused of discrimination. Therefore, we give the following

theorem.

Theorem 3.1. Non-discrimination is claimed for D if and only
if inequality |∆P |b | < τ holds for each value assignment b of each
block set B.

We use the example shown in Figure 1 to illustrate how the cri-

terion works. There are two block sets in this graph: {major}, and
{major,test_score}. Note that test_score alone is not a block set.
That is why conditioning on it will produce misleading results. For

the example shown in Table 1, examining both block sets shows no

discriminatory effect. Thus, non-discrimination can be claimed. For

the example shown in Table 2, although examining {major} shows
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no discriminatory effect, when examining {major,test_score} we
observe |∆P |

{math,B}
| = 0.06, |∆P |

{math,A}
| = 0.10, |∆P |

{biology,B}
| =

0.05, and |∆P |
{biology,A}

| = 0.10. Thus, the evidences of discrimina-

tion for four subpopulations are identified.

Although Theorem 3.1 provides a clear criterion for the claim of

non-discrimination, it requires examining each subpopulation of

each block set. A brute force algorithm may have an exponential

complexity. Instead of examining all block sets, the following theo-

rem shows that we only need to examine one node set Q, which is

the set of all E’s parents except C , i.e., Q = Par(E)\{C}.

Theorem 3.2. Non-discrimination is claimed if and only if in-
equality |∆P |q | < τ holds for each value assignment q of set Q where
Q = Par(E)\{C}.

Proof. We first give two lemmas and their proofs are given in

Appendix.

Lemma 3.3. Given a value assignment b of a block set B, Q =
Par(E)\{C}, we have

∆P |b =
∑
Q′

Pr(q′ |b) · ∆P |q,

where q′ goes through all the possible combinations of the values
of non-overlapping attributes Q′ = Q\B. For overlapping attributes
Q ∩ B, q and b have the same values.

Lemma 3.4. Node set Q of all E’s parents except C , i.e., Q =
Par(E)\{C}, must be a block set.

Lemma 3.3 indicates that, for each value assignment b of each
block set, ∆P |b can be expressed by a weighted average of ∆P |q.
If |∆P |q | < τ for each subpopulation of Q, then it is guaranteed

that |∆P |b | < τ holds for each subpopulation of each block set. Ac-

cording to Theorem 3.1, non-discrimination is claimed. Otherwise,

Lemma 3.4 means that |∆P |b | ≥ τ for at least one block setQ, which
provides the evidence of discrimination. �

3.2 Discrimination Discovery
We present the non-discrimination certifying algorithm. We empha-

size that our algorithm only needs to examine one set Q (instead of

all block sets) based on Theorem 3.2. The procedure of the algorithm

is shown in Algorithm 1. It first finds set Q in the graph. Then, the

algorithm computes |∆P |q | = | Pr(e
+ |c+, q) − Pr(e+ |c−, q)| for each

subpopulation q, and makes the judgment of non-discrimination

based on the criterion.

The complexity from Line 2 to 8 is O(|Q|), where |Q| is the
number of value assignments ofQ. The function findParent(E) (Line
1) finds the parents of E in a causal graph. A straightforward way

is to first build a causal graph from the dataset using a structure

learning algorithm (e.g., the classic PC algorithm), then find the

parents of E in the graph. The complexity of the PC algorithm is

bounded by the largest degree in the undirected graph. In the worst

case, the number of conditional independence tests required by

the algorithm is bounded by
n2(n−1)k−1

(k−1)! where k is the maximal

degree of any vertex and n is the number of vertices. However, in

our algorithm we only need to identify the parents of E without the

need of building the complete graph. Thus, we can use local causal

discovery algorithms such as the Markov blanket [31] to determine

the local structure for the decision attribute E. We leave this part

as our future work.

3.3 Discrimination Removal
When non-discrimination is not claimed, the discriminatory effects

need to be removed by modifying the data before it is used for pre-

dictive analysis (e.g., building a discrimination-free classifier). Since

the modification makes the data distorted, it may cause losses in

data utility when compared with the original data. Thus, a general

requirement in discrimination removal is to maximize the utility of

the modified data while achieving non-discrimination. A naive ap-

proach such as used in [9] would be totally removing the protected

attribute from the dataset to eliminates discrimination. However, as

we shall show in the experiments, in this way the data utility would

be greatly suffered. In this section, we propose two strategies that

exactly remove discrimination while retaining good data utility.

3.3.1 Discrimination Removal by Modifying Causal Graph. The
first strategy modifies the constructed causal graph and uses it

to generate a new dataset. Specifically, it modifies the CPT of E,
i.e., Pr(e |c, q), to obtain a new CPT Pr

′(e |c, q), to meet the non-

discrimination criterion given by Theorem 3.2, i.e., |Pr′(e+ |c+, q) −
Pr
′(e+ |c−, q)| < τ for all subpopulations q. The CPTs of all the other

nodes are kept unchanged. The joint distribution of the causal graph

after the modification can be calculated using the factorization

formula (1). After that, the algorithm generates a new dataset based

on the modified joint distribution. Since the structure of the causal

graph is not changed after the modification, Q is still the parent

set of E excluding C . Thus, according to Theorem 3.2, the newly

generated dataset satisfies the non-discrimination criterion.

To achieve a good data utility, we minimize the difference be-

tween the original distribution (denoted by P ) and the modified

distribution (denoted by P ′). We use the Euclidean distance, i.e.,

d(P ′, P) =
√∑

V(Pr
′(v) − Pr(v))2, to measure the distance between

the two distributions. We sort the nodes according to the topo-

logical ordering of the graph, and represent the sorted nodes as

{C,X,E,Y}. Note that we must have Q ⊆ X. Then, using the fac-

torization formula (1), d(P ′, P) can be formulated as

d(P ′, P) =

√ ∑
C,Q,E

βc,eq ·
(
Pr
′(e |c, q) − Pr(e |c, q)

)
2

,

where βc,eq =
∑
x′,y

(
Pr(c) Pr(x|c) Pr(y|c, x, e)

)
2

and X′ = X\Q.
Thus, the optimal solution (denoted by Pr

∗(e |c, q)) that minimizes

d(P ′, P) can be obtained by solving the following quadratic pro-

gramming problem.

minimize

∑
C,Q,E

βc,eq ·
(
Pr
′(e |c, q) − Pr(e |c, q)

)
2

subject to ∀q, |Pr′(e+ |c+, q) − Pr′(e+ |c−, q)| < τ ,

∀c, q, Pr
′(e− |c, q) + Pr′(e+ |c, q) = 1,

∀c, q, e, Pr
′(e |c, q) > 0.

The procedure of the algorithm is shown in Algorithm 2.

The complexity of Algorithm 2 depends on the complexity of

building the causal graph and solving the quadratic programming.

The complexity of building a causal graph has been discussed in

Section 3.2. Note that since deriving the objective function needs
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Algorithm 1 Certifying of Non-Discrimination (Certify)

Require: dataset D, protected attribute C , decision E , user-defined pa-

rameter τ
Ensure: judgment of non-discrimination judge, parents of E except C Q
1: Q = findParent(E)\{C }
2: for all value assignment q of Q do
3: |∆P |q | = | Pr(e+ |c+, q) − Pr(e+ |c−, q) |
4: if |∆P |q | ≥ τ then
5: return [false, Q]
6: end if
7: end for
8: return [true, Q]

Algorithm 2 Removal by Modifying Graph (MGraph)

Require: dataset D, protected attribute C , decision E , user-defined pa-

rameter τ
Ensure: modified dataset D∗

1: [judge, Q] = Certify(D, C, E, τ )
2: if judge == true then
3: D∗ = D

4: else
5: Calculate the modified CPT of E : Pr∗(e |c, q)
6: for all X ∈ V\{E } do
7: Pr

∗(x |Par(X )) = Pr(x |Par(X ))
8: end for
9: Calculate P ∗ using Equation (1)

10: Generate D∗ based on P ∗

11: end if
12: return D∗

information of the whole graph, local causal discovery cannot be

used to improve the algorithm. For the quadratic programming, it

can be easily shown that, the coefficients of the quadratic terms in

the objective function form a positive definite matrix. According to

[20], the quadratic programming can be solved in polynomial time.

3.3.2 Discrimination Removal by Modifying Dataset. The second
strategy directly modifies the decisions of selected tuples from the

dataset to meet the non-discrimination criterion. For each value

assignment q, if ∆P |q ≥ τ , we randomly select
1
a number of tuples

with C = c− and E = e−, and change their E values from e− to e+.
If ∆P |q ≤ −τ , we select tuples similarly and change their E values

from e+ to e−. As result, we ensure |∆P |q | ≤ τ for each q.
One issue here is that, in order to claim non-discrimination for

the modified dataset according to Theorem 3.2, Q should still be

the parent set of E excluding C after the modification. For any E’s
non-decedent X , according to the local Markov condition, X is

independent of E in each subpopulation specified by E’s parents,
i.e.,C and Q. Since the modified tuples are randomly selected in the

subpopulation specified by C and Q, X would still be independent

of E after the modification. Thus, all E’s non-decedents would be
conditionally independent of E given C and Q, implying that Q is

still the parent set of E excluding C .
To calculate the number of tuples to be modified within each

subpopulation q, we express ∆P |q as nc
+e+
q /nc

+

q − n
c−e+
q /nc

−

q . Refer

1
For ease of representation, in the proposed algorithm we only select the tuples with

C = c− . In practice, the selected tuples can come from the group with either C = c−
or C = c+ or both groups.

Table 3: Contingency table within subpopulation q.

positive decision (e+) negative decision (e−) total

protected group (c−) nc
−e+

q nc
−e−

q nc
−

q

non-protected group (c+) nc
+e+

q nc
+e−

q nc
+

q

total ne
+

q ne
−

q nq

to Table 3 for the meaning of the notations. For subpopulations

with ∆P |q ≥ τ , by selecting ⌈nc
−

q · (|∆P |q | − τ )⌉ tuples with C = c
−

and E = e−, and changing their E values from e− to e+, the value
of ∆P |q would decrease by ⌈nc

−

q · (|∆P |q | − τ )⌉/n
c−
q ≥ ∆P |q − τ .

Therefore, we have ∆P |q < τ after the modification. The result

is similar when ∆P |q ≤ −τ . The pseudo-code of the algorithm is

shown in Algorithm 3.

Algorithm 3 Removal by Modifying Data (MData)

Require: dataset D, protected attribute C , decision E , user-defined pa-

rameter τ
Ensure: modified dataset D∗

1: [judge, Q] = Certify(D, C, E, τ )
2: if judge == true then
3: D∗ = D

4: else
5: for all value assignment q of Q do
6: if ∆P |q > τ then
7: randomly select a set T of ⌈nc

−

q · ( |∆P |q | − τ )⌉ tuples with
C = c− and E = e− in subpopulation q, and change the values

of Es from e− to e+ to get the set T∗ of the modified tuples

8: else if ∆P |q < −τ then
9: randomly select a set T of ⌈nc

−

q · ( |∆P |q | − τ )⌉ tuples with
C = c− and E = e+ in subpopulation q, and change the values

of Es from e+ to e− to get the set T∗ of the modified tuples

10: end if
11: D∗ = D∗\T ∪ T∗

12: end for
13: end if
14: return D∗

The complexity of Algorithm 3 includes the complexity of finding

Q. Similar to Algorithm 1, we can identify E’s parents without
building the whole graph. Therefore, local discovery algorithms can

be employed to improve the efficiency of algorithm. The complexity

from Line 5 to 14 is bounded by the size of the original dataset, i.e.,

O(|D|).

4 RELAXED NON-DISCRIMINATION
CRITERION

So far, we treat datasetD as the whole population. In real situations,

D may be a sample of the whole population, and ∆P |bs under
a block set B may vary from one subpopulation to another due

to randomness in sampling, especially when the sample size is

small. The |∆P |b | values of a few b could be larger than τ due to

the small sample size although the majority of |∆P |b | values are
smaller than τ . In this situation, the dataset is claimed as containing

discrimination based on the above criterionwhere all |∆P |b |s should
be smaller than τ no matter of the majority of ∆P |b values.

We propose a relaxed α-non-discrimination criterion which may

perform better under the context of randomness and small samples
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by finding statistical evidences. Formally, for a given block set B,
we treat ∆P |B as a variable and treat the values of ∆P |bs observed
across all subpopulations as samples. We introduce a user-defined

parameter, α (0 < α < 1), to indicate a threshold for the probability

of |∆P |B | < τ . If | Pr(∆P |B | < τ ) ≥ α , then we say no significant

bias is observed under partition B. If Pr(|∆P |B | < τ ) ≥ α holds for

each block set, then α-non-discrimination can be claimed for D.

Definition 4.1. Given α , α-non-discrimination is claimed if in-

equality Pr(|∆P |B | < τ ) ≥ α holds for each block set B.

One challenge here is that we do not know the exact distribution

of ∆P |B for estimating Pr(|∆P |B | < τ ) accurately. We propose to

employ the Chebyshev’s inequality [2], which provides a lower

bound of the probability for the value of a random variable lying

within a given region, using its mean and variance. Note that the

Chebyshev’s inequality holds for any random variable irrespective

of its distribution. The general form of the Chebyshev’s inequality

is given as follows.

Theorem 4.2 (Chebyshev’s ineqality). Let X be a random
variable with finite expected value µ and finite non-zero variance σ 2.
Then for any real numbers a < b,

Pr(a < X < b) ≥ 1 −
σ 2 + (µ − b+a

2
)2

(b−a
2
)2

.

The following theorem shows a sufficient condition to satisfy

Definition 4.1 using the Chebyshev’s inequality.

Theorem 4.3. Given α , α-non-discrimination is claimed if the
following inequality holds for each block set B:

1 −
σ 2

B + µ
2

B
τ 2

≥ α ,

where µB and σ 2

B are mean and variance of ∆P |B.

The proof is straightforward by replacing X with ∆P |B, a with

−τ , and b with τ in the Chebyshev’s inequality. We show Theorem

4.3 can be achieved by examining Q only.

Theorem 4.4. Given α , α-non-discrimination is claimed if the
following inequalities holds for set Q:

1 −
σ̂ 2

Q + µ̂
2

Q

τ 2
≥ α ,

where µ̂B =
∑
B Pr(b) · ∆P |b and σ̂ 2

B =
∑
B Pr(b)(∆P |b − µ̂B)2.

Proof. The proof is straightforward by giving two lemmas:

Lemma 4.5. For each block set B, µ̂B = µ̂Q, whereQ = Par(E)\{C}.

Lemma 4.6. For each block setB, σ̂ 2

B ≤ σ̂ 2

Q, whereQ = Par(E)\{C}.

Refer to the appendix for proof details. �

5 EXPERIMENTS
We conduct experiments for discrimination discovery and removal

algorithms by using two real data sets: the Adult dataset [21] and

the Dutch Census of 2001 [25], and compare our algorithms with

previous methods proposed in [32] and [9].

The causal graphs are constructed by utilizing an open-source

software TETRAD [11], which is a widely used platform for causal

modeling. We employ the original PC algorithm and set the signifi-

cance threshold 0.01 used for conditional independence testing in

causal graph construction. The quadratic programming is solved us-

ing CVXOPT [3]. All experiments were conducted with a PC work-

station with 16GB RAM and Intel Core i7-4770 CPU. All data and

source codes used in the paper are available at https://goo.gl/CjKssf.

5.1 Discrimination Discovery
The Adult dataset consists of 65123 tuples with 11 attributes such

as age, edu, sex, occupation, income, etc. We binarize each at-

tribute’s domain values into two classes to reduce the domain sizes

because of the sparsity of the dataset. We use three tiers in the par-

tial order for temporal priority: sex, age, native_country, race
are defined in the first tier, edu is defined in the second tier, and all

other attributes are defined in the third tier. The constructed causal

graph is shown in Figure 2(a). We treat sex (female and male) as

the protected attribute and income (low_income and high_income)

as the decision. An arc pointing from sex to income is observed.

We first find set Q of income, which contains all the non-protected

attributes. There are 512 subpopulations specified byQ, and 376 sub-
populations with non-zero number of tuples due to the sparseness.

Then, we compute ∆P |q for the 376 subpopulations. On ignoring

the subpopulations with the number of females or males smaller

than 10, the value of ∆P |q ranges from −0.40 to 0.35. Among them,

63 subpopulations have |∆P |q | > 0.05, indicating the existence of

discrimination in the Adult. Moreover, the mean and standard vari-

ance of ∆P |q across all subpopulations are 0.011 and 0.142, which

has small Pr(|∆P |q | < τ ) based on the Chebyshev’s inequality, e.g.,

Pr(|∆P |q | < 0.15) ≥ 9.84%. It indicates that the non-discrimination

cannot be claimed for the Adult dataset even under the relaxed

α-non-discrimination model with large τ and small α .
Another dataset Dutch census consists of 60421 tuples with 12

attributes. Similarly, we binarize the domain values of attribute age
due to its large domain size. Three tiers are used in the partial order

for temporal priority: sex, age, country_birth are in the first tire,

edu is in the second tire, and all other attributes are in the third

tire. The constructed causal graph is shown in Figure 2(b). We treat

sex (female and male) as the protected attribute and occupation
(occupation_w_low_income, occupation_w_high_income) as the

decision. An arc from sex to occupation is observed in the causal

graph. Set Q of occupation is Q = {edu, age}. The value of ∆P |q
ranges from 0.062 to 0.435 across all the 12 subpopulations specified

by Q. Thus, discrimination against females is detected in the Dutch

census based on the non-discrimination criterion. Moreover, the

mean and standard variance of ∆P |q are 0.222 and 0.125, which

has small Pr(|∆P |q | < τ ) based on the Chebyshev’s inequality, e.g.,

Pr(|∆P |q | < 0.30) ≥ 27.94%. Hence, the Dutch census still contains

discrimination based on the relaxed α-non-discrimination criterion.

Our current implementation uses the PC algorithm to construct

the complete causal graph. In our experiment, the PC algorithmwith

the default significance threshold 0.01 takes 51.59 seconds to build

the graph for the binarized Adult dataset and 139.96 seconds for

the binarized Dutch census dataset. We also run the PC algorithm

on the original Adult dataset, which incurs 4492.36 seconds. In our

future work, we will explore the use of the local causal discovery

algorithms to improve the efficiency.
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Figure 2: Causal graphs: the red node represents the protected attribute, the blue node represents the decision, the green nodes
represent set Q, and the black nodes represent the others.

5.2 Discrimination Removal

Table 4: Comparison of MGraph, MData, Naive, two condi-
tional discrimination removal algorithms (LM and LPS), and
disparity impact removal algorithm (DI) onAdult andDutch
Census.

Adult MGraph MData Naive LM LPS DI

d (×10−3) 1.18 10.27 39.35 38.65 35.60 60.65

nT 1114 4122 29944 16048 16366 44582

χ 2
153 8470 18428 26900 10819 99770

Dutch MGraph MData Naive LM LPS DI

d (×10−3) 5.68 6.75 13.91 18.00 15.48 14.10

nT 10422 8838 32516 29288 24648 35728

χ 2
2832 4825 14014 10555 5039 19684

After executing our two proposed discrimination removal al-

gorithms, MGraph and MData, the value of |∆P |q | of all subpopu-
lations are within 0.05 for both datasets. The performance of the

algorithms in terms of the utility of the modified data is shown in

Table 4. We also report the results from the Naive method used in

[9] in which we completely reshuffle the gender information. We

measure the utility by three metrics: the Euclidean distance (d ),

the number of modified tuples (nT ), and the utility loss (χ2). We

can observe from Table 4 that the MGraph algorithm retains the

highest utility. Both MGraph and MData algorithms significantly

outperform the Naive method.We also examine how utility in terms

of three metrics vary with different τ values for our MGraph and

MData algorithms.We can see from Table 5 that both discrimination

removal algorithms incur less utility loss with larger τ values. This

observation validates our analysis of non-discrimination model.

We measure the execution times of our removal algorithms. As

expected, MGraph takes longer time than MData since the former

requires quadratic programming and data generation based on the

whole modified graph while the latter only requires the information

ofQ. For the Adult dataset with τ = 0.05, MGraph takes 3.42s while

MData takes 0.82s. For the Dutch dataset the difference is even

Table 5: Comparison of utility with varied τ values for
MGraph and MData.

Adult MGraph MData

τ 0.025 0.050 0.075 0.100 0.025 0.050 0.075 0.100

d (×10−3) 1.56 1.18 0.91 0.69 10.95 10.27 5.19 4.83

nT 1390 1114 932 792 4900 4122 2672 2312

χ 2
228 153 107 74 9255 8470 4340 3103

Dutch MGraph MData

τ 0.025 0.050 0.075 0.100 0.025 0.050 0.075 0.100

d (×10−3) 6.17 5.68 5.20 4.62 7.39 6.75 6.12 5.54

nT 12024 10422 9076 8016 10114 8838 7702 6800

χ 2
3310 2832 2334 1905 6158 4825 3869 3082

larger, i.e., 36.3s for MGraph and 0.07s for MData, since the size of

Q of Dutch census is much smaller.

5.3 Comparison with Previous Work
In [32], the authors measured the “bad” discrimination i.e., the ef-

fect that can be explained by conditioning on one attribute. They

developed twomethods, local massaging (LM) and local preferential

sampling (LPS), to remove the unexplainable (bad) discrimination

when one of the attributes is considered to be explanatory for the

discrimination. However, their methods do not distinguish whether

a partition is meaningful or not. Therefore, they cannot decrease

and even increase the number of subpopulations with discrimina-

tion. Our experiments show that, their methods cannot remove

discrimination conditioning on any single attribute. The results

are skipped due to space limitation. In addition, even if we remove

“bad” discrimination using their methods by conditioning on each

attribute one by one, a significant amount of discriminatory effects

still exist. After running the local massaging (LM) method, there are

104 subpopulations with discrimination for Adult and 9 subpopula-

tions with discrimination for Dutch census. The local preferential

sampling (LPS) method performs also poor — there are 77 subpop-

ultions with discrimination for Adult and 4 subpopulations with

discrimination for Dutch census. This is because for both datasets,
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any single attribute is not a block set and hence does not form a

meaningful partition. Even assuming each attribute forms a mean-

ingful partition, removing discrimination for each partition one by

one does not guarantee to remove discrimination since the mod-

ification under one partition may change the distributions under

other partitions.

In [9], the authors studied how to remove disparate impact (mea-

sured by risk ratio) from the data. They proposed to test disparate

impact based on how well the protected attribute C can be pre-

dicted with the non-protected attributes, and remove disparate

impact by modifying the non-protected attributes while keeping

the decision values E unchanged. Although the approach can com-

pletely remove the discrimination measured by disparate impact

at the whole dataset level, it cannot remove discrimination from

each meaningful partition. After running their repair method (DI),

there are 127 subpopulations with discrimination for Adult and 12

subpopulations with discrimination for Dutch Census.

Differently from previous work, our approaches remove discrim-

ination based on block set Q and ensure that there is no discrimi-

nation in all meaningful partitions. Moreover, our approaches keep

the causal structure unchanged after the modification and preserve

data utility. All previous methods, local massaging (LM), local pref-

erential sampling (LPS), and disparity impact removal method (DI)

incur much larger utility loss (as shown in the last three columns

of Table 4) than our algorithms.

6 RELATEDWORK
Anumber of datamining techniques have been proposed to discover

discrimination in the literature. Classification rule-based methods

[26, 27, 29] were proposed to represent certain discrimination pat-

terns. If the presence of the protective attribute increases the confi-

dence of a classification rule, it indicates possible discrimination in

the data set. Based on that, the authors in [23] further proposed to

use the Bayesian network to compute the confidence of the classifi-

cation rules for detecting discrimination. In [22], the authors dealt

with the individual discrimination by finding a group of similar

individuals. When there are significantly different decision out-

comes between the individuals from the protected group and the

individuals from the non-protected group, the difference implies dis-

crimination. Conditional discrimination, i.e., part of discrimination

may be explained by other legally grounded attributes, was studied

in [32]. The task was to evaluate to which extent the discrimination

apparent for a group is explainable on a legal ground. However,

their method does not distinguish whether a partition is meaning-

ful for measuring discrimination, and it also does not consider the

situation where there exist multiple meaningful partitions.

Proposed methods for discrimination prevention are either based

on data preprocessing or algorithm tweaking. Data preprocessing

methods [1, 9, 12, 16, 23, 32, 34] modify the historic data to remove

discriminatory effect before conducting predictive analysis. For ex-

ample, in [16] several methods for modifying data were proposed,

including Massaging, which corrects the labels of some individuals

in the data, Reweighting, which assigns weights to individuals to

balance the data, and Sampling, which changes the sample sizes of

different subgroups to remove the bias in the data. In [9], the authors

studied how to remove disparate impact, i.e., indirect discrimination.

The authors first remove direct discrimination by completely delet-

ing the protected attribute from the data. Then, they test disparate

impact based on how well the protected attribute can be predicted

with the non-protected attributes, and remove disparate impact by

modifying the distribution of the non-protected attributes such that

the protected attribute cannot be estimated from the non-protected

attributes. As shown by our experiments, removing the protected

attribute from the released data would significantly damage the

data utility. Proposed methods for discrimination prevention us-

ing algorithm tweaking require some tweak of predictive models,

including the decision tree [17], the naive bayes classifier [5], the

logistic regression [18], and the log-linear model [33]. In [8], the

authors addressed the problem of constructing a predictive model

that achieves both statistical parity and individual fairness, i.e.,

similar individuals should be treated similarly. In [13], the authors

proposed to sanitize discriminatory patterns by incorporating the

privacy preserving methods. In [14], the authors proposed a frame-

work for optimally adjusting any predictive model so as to remove

discrimination. All the above works are based on correlations rather

than the causation.

Most recently, several studies have been devoted to analyzing

discrimination from the causal perspective. The authors in [4] pro-

posed a framework based on the Suppes-Bayes causal network

and developed several random-walk-based methods to detect dif-

ferent types of discrimination. However, the construction of the

Suppes-Bayes causal network is impractical with the large number

of attribute-value pairs. In addition, it is unclear how the number

of random walks is related to practical discrimination metrics, e.g.,

the difference in positive decision rates τ . Studies in [36–39] are

built on the causal graph and causal modeling, and [35] provides a

review of these works. They focused on detecting and removing

either discrimination at the individual level or discrimination at the

whole dataset level. Differently, this paper studies how to remove

discrimination from all meaningful partitions of a dataset.

7 CONCLUSIONS
In this paper, we have investigated how to detect and remove dis-

crimination from all meaningful partitions. With the support of

the causal graph, we have shown that the discriminatory effect

can only be identified under the partition defined by the block set.

We have provided the condition for the block set. Based on that,

we have developed a simple non-discrimination criterion and two

strategies for removing discrimination. We also proposed a relaxed

non-discrimination criterion to deal with sampling randomness in

the data. The experiment results using real datasets show that our

proposed approaches are effective in discovering and completely

removing discrimination.

Appendices
Proof of Lemma 3.3

Proof. We first sort the nodes in the causal graph according to

the topological ordering of the DAG, so that for each sorted pair of

nodes X and Y that X is ahead of Y , X must be Y ’s non-descendent
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and Y must be X ’s non-ancestor. The topological ordering is guar-

anteed to be found in a DAG [7]. We represent the sorted nodes by

an ordered list {· · · ,C, · · · ,E, · · · }. According to the local Markov

condition, we have

Pr(V |Prior(V )) = Pr(V |Par(V )), (2)

where Prior(V ) represents all the nodes prior to V in the ordering.

Now we consider a topological ordering such that, (i) node E and

all nodes in Q are consecutive in ordering, (ii) all nodes posterior

to E are E’s descendents. It is easy to prove that such a topological

ordering can always be constructed.
2
Denote by X,Y,Z the set of

nodes that are prior to C , between C and Q, and posterior to E
respectively. The topological ordering can be represented as the

list {X,C,Y,Q,E,Z}. According to the definition of the block set, B
contains no node in Z. Thus, B ⊆ X ∪ Y ∪ Q. We define X′ = X\B,
Y′ = Y\B, Q′ = Q\B. Since sets X,Y,Q are mutually exclusive, we

have B = (X\X′) ∪ (Y\Y′) ∪ (Q\Q′), which entails that

(X\X′) ∪ (Y\Y′) = B ∪ Q′. (3)

From probability theories, we have

Pr(e+ |c+, b) =
Pr(e+, c+, b)
Pr(c+, b)

=
1

Pr(c+, b)

∑
X′,Y′,Q′,Z

Pr(x, c+, y, q, e+, z).

According to the chain rule of probability calculus, we have

Pr(e+ |c+, b)

=
1

Pr(c+, b)

∑
X′,Y′,Q′,Z

Pr(x, c+, y, q) · Pr(e+ |Prior(E)) · Pr(z|Prior(Z))

=
1

Pr(c+, b)

∑
X′,Y′,Q′

Pr(x, c+, y, q) · Pr(e+ |Prior(E)).

From Equation (2), it follows that

Pr(e+ |c+, b) =
1

Pr(c+, b)

∑
X′,Y′,Q′

Pr(x, c+, y, q) · Pr(e+ |Par(E))

=
1

Pr(c+, b)

∑
X′,Y′,Q′

Pr(x, c+, y, q) · Pr(e+ |c+, q)

=
1

Pr(c+, b)

∑
Q′

{
Pr(e+ |c+, q) ·

∑
X′,Y′

Pr(x, c+, y, q)
}
.

From Equation (3), we have

Pr(e+ |c+, b) =
1

Pr(c+, b)

∑
Q′

Pr(e+ |c+, q) · Pr(c+, b, q)

=
∑
Q′

Pr(q|c+, b) · Pr(e+ |c+, q) =
∑
Q′

Pr(q′ |c+, b) · Pr(e+ |c+, q).

If (C y Q′ | B)G′ , then we can find a path from C to E through

Q′ that is not blocked, which means that (C y E | B)G′ . This
contradicts B being a block set. Therefore, we must have (C y Q′ |
B)G′ , which entails (C y Q′ | B)G according to the d-separation
criterion. Thus, it follows that

Pr(e+ |c+, b) =
∑
Q′

Pr(q′ |b) · Pr(e+ |c+, q).

2
For (i), if any node lies between E and some of its parents, we can move the node to

the front of all E ’s parents and the resultant list is still a topological ordering. Similarly

we can prove (ii).

We can obtain similar result for Pr(e+ |c−, b). Therefore, we have

∆P |b =
∑
Q′

Pr(q′ |b) · ∆P |q. (4)

Hence, the lemma is proven. �

Proof of Lemma 3.4

Proof. We classify the paths from C to E other than arc C → E
into two cases based on the last node X ahead of E on the path.

For the first case, X is a parent of E. Thus, X is a noncollider and

belongs to Q. Based on the definition, each path in the first case is

blocked by Q. For the second case, X is a child of E. Then, there
must be at least one collider Y on each path in the second case.

Otherwise, the path is mono-directional with all the arcs pointing

from E to C , forming a circle with the arc C → E. This contradicts
to that a CBN is a directed acyclic graph. Let Y be the last collider

ahead of E on a path. Then, neither Y nor its descendant Z can be

E’s parent. Otherwise, mono-directional path E → · · · → Y → E
or E → · · · → Y → · · · → Z → E forms a circle, which again

contradicts to that a CBN is a directed acyclic graph. Thus, according

to the definition, each path in the second case is blocked by Q.
Finally, Q contains none of E’s descendents. Therefore, Q is a block

set. Hence, the lemma is proven. �

Proof of Lemma 4.5

Proof. By definition, we have

µ̂B =
∑
B

Pr(b) · ∆P |b.

According to Equation (4), we have

µ̂B =
∑
B

Pr(b) ·
∑
Q′

Pr(q′ |b) · ∆P |q,

where Q′ = Q\B. It follows that

µ̂B =
∑
B,Q′

Pr(b) · Pr(q′ |b) · ∆P |q =
∑
B,Q′

Pr(b, q′) · ∆P |q

=
∑

X=B∪Q′
Pr(x) · ∆P |q =

∑
B′,Q

Pr(b′, q) · ∆P |q,

where B′ = B\Q. Then, it follows that

µ̂B =
∑
Q

∆P |q ·
∑
B′

Pr(b′, q) =
∑
Q

∆P |q · Pr(q) = µQ.

Hence, the lemma is proven. �

Proof of Lemma 4.6

Proof. By definition, we have

σ̂ 2

B =
∑
B

Pr(b)(∆P |b − µ̂B)
2

=
∑
B

Pr(b)
(
(∆P |b)

2 − 2µ̂B∆P |b + µ̂
2

B

)
=
∑
B

Pr(b)(∆P |b)
2 − 2µ̂B

∑
B

Pr(b)∆P |b + µ̂
2

B

∑
B

Pr(b).
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According to Equation (4), we have∑
B

Pr(b) · (∆P |b)
2 =

∑
B

Pr(b) ·
(∑
Q′

Pr(q′ |b) · ∆P |q
)
2

=
∑
B

Pr(b) ·
(∑
Q′

√
Pr(q′ |b) ·

√
Pr(q′ |b)∆P |q

)
2

.

According to Cauchy’s Inequality, it follows that∑
B

Pr(b) · (∆P |b)
2

≤
∑
B

Pr(b) ·
(∑
Q′

Pr(q′ |b)
)
·

(∑
Q′

Pr(q′ |b) · (∆P |q)2
)

=
∑
B

Pr(b) ·
(∑
Q′

Pr(q′ |b) · (∆P |q)2
)
.

Similar to the proof of Lemma 4.5, it follows that∑
B

Pr(b) · (∆P |b)
2 ≤

∑
B,Q′

Pr(b, q′) · (∆P |q)2

=
∑

X=B∪Q′
Pr(x) · (∆P |q)2 =

∑
B′,Q

Pr(b′, q) · (∆P |q)2 =
∑
Q

Pr(q) · (∆P |q)2.

Hence, we have∑
B

Pr(b) · (∆P |b)
2 ≤

∑
Q

Pr(q) · (∆P |q)2.

According to Lemma 4.5, we have

µ̂B =
∑
B

Pr(b) · ∆P |b = µ̂Q =
∑
Q

Pr(q) · ∆P |q.

Besides, we have ∑
B

Pr(b) =
∑
Q

Pr(q) = 1.

Thus, it follows that

σ̂ 2

B ≤
∑
Q

Pr(q)(∆P |q)2 − 2µ̂Q
∑
Q

Pr(q)∆P |q + µ̂2Q
∑
Q

Pr(q) = σ̂ 2

Q.

Hence, the lemma is proven. �
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