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Abstract

Discrimination discovery is to unveil discrimina-
tion against a specific individual by analyzing the
historical dataset. In this paper, we develop a gen-
eral technique to capture discrimination based on
the legally grounded situation testing methodology.
For any individual, we find pairs of tuples from the
dataset with similar characteristics apart from be-
longing or not to the protected-by-law group and
assign them in two groups. The individual is con-
sidered as discriminated if significant di↵erence
is observed between the decisions from the two
groups. To find similar tuples, we make use of
the Causal Bayesian Networks and the associated
causal inference as a guideline. The causal struc-
ture of the dataset and the causal e↵ect of each
attribute on the decision are used to facilitate the
similarity measurement. Through empirical assess-
ments on a real dataset, our approach shows good
e�cacy both in accuracy and e�ciency.

1 Introduction

Discrimination refers to the unjustified distinction against an
individual based on the group, class or category to which that
individual belongs or is perceived to belong. Discrimination
is widespread in subjective decision making processes. This
situation even deteriorates today due to the increased use of
predictive models that are built around the collection of in-
dividual data to make important decisions like employment,
credit, insurance, etc. A large number of laws and regulations
(e.g., Council Directive 2000/78/EC or Title VII of the Civil
Rights Act of 1964) have been established to forbid discrim-
ination on several grounds, such as gender, age, pregnancy,
sex orientation, race, national origin, religion, genetic infor-
mation, and disability or illness, which are referred to as the
protected attributes. Although the laws and regulations for
discrimination are clear, proving discrimination in practice is
di�cult, because discrimination is usually hidden behind var-
ious pretexts and it is hard to find clear and su�cient evidence
of discrimination in many cases [Rorive, 2009].

Discrimination discovery has been an active research area
in data mining recently [Hajian and Domingo-Ferrer, 2013;
Kamiran and Calders, 2012; Ruggieri et al., 2010; Romei

and Ruggieri, 2014]. To detect discrimination against spe-
cific individuals, some researchers proposed to simulate sit-
uation testing using data mining algorithms over a historical
decision dataset [Luong et al., 2011]. Situation testing is a
legally grounded technique for analyzing the discriminatory
treatment on an individual. It has been widely adopted both
in the United States [Bendick, 2007] and the European Union
[Rorive, 2009]. Situation testing is carried out in responding
to a complaint about discrimination from an individual. Pairs
of testers who are similar to the individual are then sent out
to participate in the same decision process (e.g., applying for
the same job). For each pair, the two testers possess the same
characteristics except the membership to the protected group.
For example, in the case of employment, the resumes of a pair
of testers with di↵erent gender can be made equivalent in the
education background, work experience, expertise and skills,
and only vary in details and formats to avoid being consid-
ered as duplicates. The objective is to measure the treatments
or decisions given to the members from the same pair. If one
of the pair receives a di↵erent decision, the distinction im-
plies discriminatory behavior. To ensure representativeness
and “average out” random circumstances, a certain number
of tester pairs are usually required by the court.

Employing the situation testing methodology, discrimina-
tion can be detected by finding a representative group of tu-
ples from the historical dataset for a target individual. The
representative group contains pairs of tuples with similar
characteristics apart from belonging to the protected group
and non-protected group. The target individual is considered
as discriminated if significant di↵erence is observed between
the decisions from the two parts of tuples. The key issue in
the implementation of situation testing is how to define and
determine the representative group. Luong et al. proposed a
K-nearest neighbor (K-NN) classification based approach to
find the similar tuples [Luong et al., 2011]. In their method,
the similarity between two tuples is modeled via a distance
function that takes all attributes as the input. The normalized
Manhattan distance and overlap measurement are adopted to
compute the distance between two tuples. Their approach
shows a successful implementation of the situation testing
methodology, however, there are several limitations: 1) They
use all attributes for computing the distance. However, not all
attributes are relevant to the decision, even if they are legally
admissible. 2) The distance function does not distinguish the
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Figure 1: CBN of the illustrative example.

Table 1: Part of the dataset of the illustrating example.

No. gender major score height weight admission
1 F CS B low low reject
2 M CS B high high admit
3 F CS A low low reject
4 M CS A median median admit
5 F CS C low median reject
6 M CS C high median reject
7 M EE B low low reject

......

potentially di↵erent e↵ects on discrimination due to di↵er-
ent values taken by an attribute. As a result, the identified
representative group may not be accurate and the following
situation testing could have incorrect results, as demonstrated
in our empirical evaluations.

We propose the use of the Causal Bayesian Networks
(CBNs) as a guideline in the implementation of situation test-
ing for discrimination discovery. A CBN is a probabilistic
graph model which is widely used for causality representa-
tion, reasoning and inference [Pearl, 2009]. Our ideas are as
follows. First, only the attributes that are the direct causes of
the decision should be used in the distance computation. Sec-
ond, the causal e↵ect of an attribute on the decision can be
used to facilitate the measurement of distance between di↵er-
ent values taken by the attribute. Consider a toy model for a
university admission system shown in Figure 1 and Table 1,
which we use as the illustrative example throughout the pa-
per. Intuitively, height and weight should not be involved
in the distance computation as they are irrelevant to the deci-
sion. On the other hand, suppose that score grades A, B, C
stand for good, median, and failure. It would be more rea-
sonable if the A-to-B distance is measured smaller than the
B-to-C distance.

In this paper, we develop a situation testing-based tech-
nique to capture discrimination with the support of the CBN.
To find similar tuples, we define a distance function on the
set of attributes that are the direct causes of the decision. For
each attribute, we measure the distance between two domain
values taking into consideration the value di↵erence as well
as the causal e↵ect on the decision of changing the attribute
from one value to the other. Through empirical assessments
on a real dataset, we show that both the identification accu-
racy and e�ciency can be significantly improved.

2 Preliminary Concepts

2.1 Data Representation

We consider a historical dataset that consists of a set T of
tuples, each of which describes the profile of an individual.

Each tuple t 2 T is explicitly specified by a set of attributes,
which contains some protected attributes, the decision at-
tribute, and the non-protected attributes. In the illustrative
example, gender is the protected attribute, admission is
the decision attribute, and all the other attributes are the non-
protected attributes. Throughout this paper, we use an upper-
case alphabet, e.g., X, to represent an attribute, e.g., major;
a bold uppercase alphabet, e.g., X, to represent a subset of
attributes, e.g., {major, score}. We use a lowercase alpha-
bet, e.g., x, to represent a domain value of attribute X; a bold
lowercase alphabet, e.g., x, to represent a value assignment
of X. For ease of representation, we assume that there is only
one protected attribute. We denote the protected attribute by
C, associated with domain values of the protected group c�
(e.g., female) and the non-protected group c+ (e.g., male);
and denote the decision by E, associated with domain values
of positive decision e+ and negative decision e�. The set of
all the other non-protected attributes is denoted by R. Thus,
a tuple t can be specified by the triple (c, r, e). Our approach
can extend to handle multiple domain values of C/E and even
multiple Cs.

2.2 Causal Bayesian Network

A CBN is a probabilistic graph model which is specified by
a directed acyclic graph (DAG) G = (V,A) and a group of
conditional probability distributions. V is a set of nodes and
A is a set of arcs. In the DAG, each node represents an at-
tribute. Each arc, denoted by an arrow ! pointing from the
cause to the e↵ect, represents the direct causality between the
two attributes. The absence of an arc between two nodes
represents a claim of zero direct e↵ect between the two at-
tributes in all distributions. In this paper, we assume that arc
C ! E is present in the CBN. This indicates that there exits
some kind of causal e↵ect of C on E in the whole dataset.
However, whether a tuple is discriminated or not cannot be
identified via the presence of arc C ! E. The CBN satis-
fies the Markov assumption, i.e., each node X is independent
of all its non-descendants conditional on its parents Par(X).
We also use Par(X) to represent a value assignment of the
parents of X if no unambiguity occurs in the context. Each
node is associated with a conditional probability distribution,
i.e., P(X|Par(X)). The joint probability distribution over all
attributes can be computed using the factorization formula
[Koller and Friedman, 2009].

The basis for causal inference in the CBN is to measure
the impact of interventions. An intervention is an action that
forces some subset X of attributes to take certain values x.
The intervention is supposed to be e↵ective in the sense that
the value assignment of X is completely determined by the in-
tervention, and local in the sense that of all other attributes Y

(Y = V\X) the conditional distributions P(Y|Par(Y)) are not
a↵ected by the intervention. The CBN permits us to estimate
post-intervention distributions from the pre-intervention dis-
tributions using the do-calculus [Pearl, 2009]. Formally, the
intervention that sets the value of X to x is represented by
do(X = x) or simply do(x). The post-intervention distribu-
tion on Y, i.e., P(y|do(x)), is readily expressed as a truncated
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factorization formula

P(y|do(x)) =
Y

Y2Y
P(y|Par(Y))|

X=x

, (1)

where P(y|Par(Y))|
X=x

means substituting any attributes in X

involved in the conditional probability with the corresponding
values in x. There is also a set of inference rules to facilitate
the expression of the post-intervention distributions. For a
DAG G and a subset of nodes X in G, let G

X

denote the graph
obtained by deleting all arcs pointing to nodes in X, and let
G

X

denote the graph obtained by deleting all arcs emerging
from nodes in X. The following proposition [Pearl, 2009]
states the inferences rules.
Proposition 1 (Rules of do-Calculus). Let G be the DAG of
a CBN. For any disjoint subsets of nodes X, Y, Z, W, there
are following rules.

1. P(y|do(x), z,w) = P(y|do(x),w), if Y and Z are d-
separated by X [W in G

X

.
2. P(y|do(x), do(z),w) = P(y|do(x), z,w), if Y and Z are

d-separated by X [W in G
XZ

.

3. P(y|do(x), do(z),w) = P(y|do(x),w), if Y and Z are d-
separated by X [W in G

XZ

0 , where Z

0 is the nodes in Z

that are not ancestors of any nodes in W in G
X

.
The above rules make use of the well-known d-separation

criterion.
Definition 1 (d-Separation). A path p is said to be blocked
by a set of nodes Z if and only if

1. p contains a chain i ! j or a fork i  m ! j such that
the middle node m is in Z, or

2. p contains an collider i ! m  j such that the middle
node m is not in Z and no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks
all paths from X to Y.

3 Strength and Weakness of Modeling

Discrimination as Direct Causal E↵ect

Typically, a discrimination claim means demonstrating a di-
rect causal connection between protected attribute C and de-
cision attribute E [Foster, 2004]. Thus, the CBN and the as-
sociated causal inference have an immediate application in
discrimination analysis since the discriminatory e↵ect can
be straightly represented by the direct causal e↵ect of C on
E. Using Pearl’s method [Pearl, 2001], we define the direct
causal e↵ect as follows:
Definition 2. Given a tuple t = (c, r, e), the direct causal ef-
fect of protected attribute C on decision attribute E is defined
as

P(e+|do(c+, r)) � P(e+|do(c�, r)), (2)
where r is a value assignment of R and R is the set of all the
other attributes.

Equation (2) indicates that discrimination can be identified
by the response of the decision E to the change of the pro-
tected attribute C while fixing the values of all the other at-
tributes R. Note that fixing r is di↵erent from conditioning on

r. The simply use of P(e+|do(c+), r)�P(e+|do(c�), r) may cre-
ate spurious associations between C and E even when there
is no direct causal e↵ect of C on E.

To calculate Equation (2), we have the following lemma.
Lemma 1. Equation (2) is equivalent to

P(e+|c+,q) � P(e+|c�,q), (3)

where q is the value assignment of Q and Q is E’s parent set
except C, i.e., Q = Par(E)\{C}.

The proof of this lemma is straightforward using Equation
(1). Equation (3) implies that the response of E can be es-
timated from the dataset by the di↵erence in the decision of
tuples with the same characteristics Q apart from belonging
or not in the protected group.

However, there exists a practical limitation with the above
measurement in situation testing. In litigation the courts usu-
ally require a certain number of tester pairs for situation test-
ing to ensure representativeness [Rorive, 2009]. Researchers
in situation testing suggest that there should be at least 50
tester pairs in a single testing [Bendick, 2007]. However, the
tuples used for computing the probabilities in Equation (3)
must come from the same subgroup specified by q. Thus,
there is no guarantee that the number of these tuples can sat-
isfy any given requirement.

Inspired by [Luong et al., 2011], we tackle this limitation
by finding 2K tuples that are closest to the target tuple, where
K can be designated by the court. The CBN can provide a
guidance of finding tuples. Intuitively, we can first select the
tuples from the subgroup specified by q, and then select the
tuples from the following appropriate subgroups. The details
of our method will be discussed in the next section.

4 Discrimination Discovery

In this section, we describe our causal inference approach for
discrimination discovery. We formalize situation testing in
our context. Given a target tuple t with c = c� and e = e�,
we rank all the tuples according to their distances to t using
a distance function defined on an appropriate subset of non-
protected attributes. Then, we select the tuples that are within
top-2K highest in the ranking for one-to-one pairing. The se-
lected tuples with c+ are added into set S

+, and the selected
tuples with c� are added into set S

�. We compare the pro-
portion p1 of tuples with e+ among the tuples in S

+, and the
proportion p2 of tuples with e+ among the tuples in S

�. The
di↵erence between p1 and p2, i.e., p1 � p2 reflects the bias
due to the membership to the protected group. If p1 � p2 is
greater than a threshold ⌧, then t is considered as being dis-
criminated. The value of threshold ⌧ used for discrimination
depends on the law. For instance, the 1975 British legislation
for sex discrimination sets ⌧ = 0.05, namely a 5% di↵erence.

We assume that we have a CBN that is compatible with the
dataset. We also make a reasonable assumption that there is
no arc pointing to C in the CBN, as the protected attribute is
always an inherent nature of an individual. A CBN can be
learned from data and expert knowledge. In the past decades,
many algorithms have been proposed to learn CBNs, and
they are proved to be quite successful [Spirtes et al., 2000;
Neapolitan and others, 2004; Colombo and Maathuis, 2014].
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How a CBN is constructed by a learning algorithm or domain
experts and how to measure the quality of a CBN are beyond
the scope of this paper.

In the following, we first present the distance function and
then describe the discovery algorithm.

4.1 Distance Function

Consider two tuples t and t0, the distance function d(t, t0) mea-
sures the dissimilarity between the two tuples. To define the
distance function, researchers first establish a distance metric
for measuring the per-attribute distance, and then compute the
joint e↵ect by summing up all the per-attribute distances. In
[Luong et al., 2011], the distance between two domain values
rk and r0k of attribute Rk 2 R is defined as the value di↵er-
ence, where the normalized Manhattan distance is employed
for ordinal/interval attributes, and the overlap measurement is
employed for categorical attributes. The normalized Manhat-
tan distance is defined as:

md(rk, r0k) =
|rk � r0k |
range

,

where range is used to normalize the result, defined as the
di↵erence between the maximum and the minimum of the
attribute. The overlap measurement is defined as:

ol(rk, r0k) =
(

0 if rk = r0k
1 otherwise

Overall, the di↵erence between t and t0 is given by

d(t, t0) =
|R|X

k=1

VD(rk, r0k),

where

VD(rk, r0k) =
(

md(rk, r0k) if Rk is ordinal/interval
ol(rk, r0k) if Rk is categorical

As discussed in Section 1, the above distance function has
two limitations. First, Equation (3) implies that the distance
function should be defined on Q, since they are the direct
causes of the decision. Other attributes are either not causally
related to E or have the causal e↵ects on E that are trans-
mitted by the direct causes. Including these attributes in the
distance computation may lead to incorrect results in the simi-
larity measurement. Consider the illustrative example in Sec-
tion 1. Suppose that tuple 1 is the target for testing, and we
want to find the closest tuple from the tuples listed in the ta-
ble. If we use all non-protected attributes to compute the dis-
tance, tuples 3 and 7 are the closest ones as both of them have
only one mismatch. However, from the CBN we can see that,
height and weight are not causally related to admission
and should not be involved in the computation. In fact, tuple
2 is closest to the target since their majors and scores are
exactly the same.

Second, when measuring the per-attribute distance, the
causal e↵ect of each attribute on the decision can reveal im-
portant information relating to similarity. The response of the
decision to change of the attribute reflects the di↵erence in
how the two domain values a↵ect the decision. Thus, two

values can be considered to be closer if changing the attribute
from one value to the other produces smaller influence on the
decision. Consider the same above example and we want to
measure the distance between di↵erence values of attribute
score. The distance between A and B and the distance be-
tween B and C are measured as equivalent if only the value
di↵erence is considered, e.g., using the Manhattan distance.
However, from the tuples listed in the table we can see that,
both the admission rates for A and B are 50%, and the ad-
mission rate for C is 0%. Thus, the causal e↵ect of score
on decision can facilitate to more accurately characterize
the similarity in situations where A and B are closer than B
and C with respect to the admission. Furthermore, the per-
attribute distance should be instance dependent. For exam-
ple, although both the score di↵erence between tuples 3 and
2 and that between tuples 3 and 7 are the same A-to-B di↵er-
ence, they should not be equal since tuples 3 and 2 apply to
the same major while tuple 7 applies to another.

Based on the first observation, we define the distance func-
tion on the basis of Q, where Q = Par(E)\{C}. For the second
observation, we measure the causal e↵ect on the decision of
each attribute Qk 2 Q. We model the change of Qk from qk to
q0k as two interventions that force Qk to take that two values
respectively while keeping all other attributes the same as q.
According to the definition of interventions [Pearl, 2009], we
define as follows:
Lemma 2. Given a tuple t, the response of the decision to the
change of Qk from qk to q0k is given by

CE(qk, q0k) = P(e+|do(q)) � P(e+|do(q0k,q\{qk})), (4)
where P(e+|do(q)) is the e↵ect of the intervention that forces
Q to take value q, and P(e+|do(q0k,q\{qk})) is the e↵ect of
the intervention that forces Qk to take value q0k and other at-
tributes in Q to take the same value as q.

Note that CE(qk, q0k) is instance dependent. For di↵erent
tuples, the measure would not be equal even for the same pair
of qk, q0k if the tuples possess di↵erent profiles q. Then, we
define the distance function for tuples t, t0 as follows.
Definition 3. The distance between tuples t, t0 is given by

d(t, t0) =
|Q|X

k=1

����CE(qk, q0k) · VD(qk, q0k)
����, (5)

where Q = Par(E){C}.
In our distance function, the production of CE(qk, q0k) and

VD(qk, q0k) can be interpreted in two aspects: (1) CE(qk, q0k)
can be considered as the weight of VD(qk, q0k), indicating how
significant this value di↵erence is with regard to the deci-
sion; (2) VD(qk, q0k) can also be considered as the weight of
CE(qk, q0k), indicating to what extend this causal e↵ect is re-
lating to the similarity between the two values. A more gen-
eral version may include the scale parameters ↵, � for the two
metrics CE and VD:

d(t, t0) =
|Q|X

k=1

����CE(qk, q0k)↵ · VD(qk, q0k)�
����.

In the following, we show how to calculate CE(qk, q0k). Di-
rectly using Equation (1) involves summing over all values of
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Figure 2: CBNs that show: (a) paths connecting E and Q in
GCQ

; (b) paths connecting C and Q in G
Q

.

the attributes in R [ {C}\Q, which is too tedious. Thus, we
make use of the inference rules in Proposition 1. The result is
given by the following lemma.
Lemma 3. Given a tuple t,

CE(qk, q0k) =
X

C

⇣
P(e+|c,q) · P(c) � P(e+|c, q0k,q\{qk}) · P(c)

⌘
.

Proof. As defined in Equation (4), we have CE(qk, q0k) =
P(e+|do(q))� P(e+|do(q0k,q\{qk})). By conditioning and sum-
ming over the values of C, we can write P(e+|do(q)) as

P(e+|do(q)) =
X

C

P(e+|c, do(q)) · P(c|do(q)).

For term P(e+|c, do(q)), we can show that E and Q are d-
separated given C in GCQ

. Since all arcs pointing to C (in fact
we have assumed that there is no arc pointing to C) and all
arcs emerging from Q are deleted in GCQ

, there are only two
types of paths connecting E and Q, as illustrated in Figure
2a. The first type of paths pa1 starts from an arc pointing to
E and ends with an arc pointing to any node in Q. Since C is
the only parent of E in GCQ

, pa1 must pass through C where
C acts as the middle node in a fork. According to Condition
1 in Definition 1, pa1 is blocked by C. The second type of
paths pa2 starts from an arc emerging from E and ends with
an arc pointing to any node in Q. pa2 cannot consists entirely
the arcs with the direction that points from E to Q, otherwise
the mono-directional path E ! · · ·Q ! E forms a circle in
G, which contradicts to that G is a DAG. Thus, there exists
at least one collider on pa2. According to Condition 2 in
Definition 1, pa2 is blocked by ;. Therefore, E and Q are
d-separated by C in GCQ

. By applying Rule 2 in Proposition
1, we have

P(e+|c, do(q)) = P(e+|c,q).
For term P(c|do(q)), as illustrated in Figure 2b, there is no
arc pointing to C, and all arcs pointing to Q are deleted in
G

Q

. Thus, there is only type of paths pa1, which starts with
an arc emerging from C and ends with an arc emerging from
any node in Q. Clearly, there must exist at least one collider
on the path. According to Condition 2 in Definition 1, pa1 is
blocked by ;. Therefore, C and Q are d-separated in G

Q

. By
applying Rule 3 Proposition 1, we have

P(c|do(q)) = P(c).

Thus, it follows that

P(e+|do(q)) =
X

C

P(e+|c,q) · P(c).

Similarly we can calculate P(e+|do(q0k,q\{qk})). As a result,
we have

CE(qk, q0k) =
X

C

⇣
P(e+|c,q) · P(c) � P(e+|c, q0k,q\{qk}) · P(c)

⌘
.

⇤

4.2 Discovery Algorithm

Now we describe our discrimination discovery algorithm
(CBN-DD). The pseudocode of the algorithm is presented in
Algorithm 1. Given the target tuple t, the algorithm first finds
the set Q in the CBN. Then, the algorithm is divided into
three stages. In the first stage (lines 2-8), all tuples are ranked
using the distance function (Equation (5)). Since the distance
function is defined on Q, all the tuples are divided into ho-
mogeneous subgroups according to their value assignment of
Q. All tuples in a subgroup are measured the same distance
to t. Thus, the algorithm ranks the tuples on the basis of the
subgroups. For each value assignment q

l of Q, define sub-
group g

l = g

l,+ [ g

l,� containing all the tuples t0 with q

0 = q

l,
where tuples with c0 = c+ are contained in g

l,+ and tuples
with c0 = c� are contained in g

l,�. Then, the distance d[l]
is calculated between t and the first tuple in g

l (denoted as
g

l[0]). The ranking orders are stored in an array L. In the
second stage (lines 9-17), tuples that are ranked top-2K are
selected, starting from subgroup g

L[0] which ranks the high-
est. Within each subgroup g

L[i], we select the same number
of tuples from g

L[i],+ and g

L[i],� to guarantee strict one-to-one
pairing. The tuples selected from g

L[i],+ are added into set S

+,
and tuples selected from g

L[i],� are added into set S

�. The
algorithm selects as much as possible tuples from one sub-
group, and then moves on to the next. The loop ends until the
number of the selected tuples reaches 2K. Finally, in the third
stage (lines 18-20), p1 and p2 are calculated from S

+ and S

�,
and the discrimination judgment is made based on p1 � p2.

The total computational complexity of the algorithm is
O(M · |Q| + K), where M is the number of value assignments
of Q. Usually, M is far smaller than the total number of tuples
since Q is a subset of all the attributes.

5 Experiments

To evaluate the proposed discrimination discovery algorithm,
we have conducted experiments by using the Dutch Census of
2001 [Netherlands, 2001], which is widely used in discrimi-
nation discovery literature. The dataset consists of 60421 tu-
ples, each of which is described by 12 attributes. We treat sex
(female and male) as the protected attribute and occupation
(occupation w low income, occupation w high income) as
the decision attribute. The CBN is constructed by TETRAD
[Glymour and others, 2004], an open-source platform for
causal modeling. We employ the original PC algorithm
[Spirtes et al., 2000] and the significance level ↵ = 0.05 for
the structure learning. For experiment details including the
CBN please refer to our technical report [Zhang et al., 2016].

From the CBN, an arc from sex to occupation
is observed, and the set Q is identified as {age,
education level, country birth, economic status}.
We randomly select 200 tuples as the targets for discrimina-
tion testing. For each target tuple, we search similar tuples
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Algorithm 1: Discrimination Discovery (CBN-DD)
1 Q = Par(E)\{C};
2 foreach value assignment q

l of Q do

3 g

l,+ = {t0|q0 = q

l, c0 = c+};
4 g

l,� = {t0|q0 = q

l, c0 = c�};
5 g

l = g

l,+ [ g

l,�;
6 d[l] = d(t, gl[0]);
7 end

8 Rank g

l in ascending order according to d[l] and store the
orders in L[l];

9 n = 0; i = 0; S

+ = S

� = ;;
10 while n < K do

11 select min(|gL[i],+|, |gL[i],�|,K � n) tuples t

+ from g

l,+;
12 select min(|gL[i],+|, |gL[i],�|,K � n) tuples t

� from g

l,�;
13 S

+ = S

+ [ t

+;
14 S

� = S

� [ t

�;
15 n+ = |t+|;
16 i + +;
17 end

18 p1 = the positive decision rate in S

+;
19 p2 = the positive decision rate in S

�;
20 return p1 � p2 > ⌧ ? true : false;

Table 2: Summarized results for 200 target tuples.

(a) Tuples identified as discrimi-
nated

K CBN-DD KNN-DD di↵
10 150 141.3 62.5
50 151.6 159.4 56
90 152.9 158.8 55.7

(b) Accuracy

K CBN-DD KNN-DD
TP TN TP TN

10 73.3 63.1 46 66.2
50 85.3 77.6 42.2 76.2
90 81.5 83.9 38.1 81.2

from the whole dataset. The threshold ⌧ is set as 0.05. We
compare our algorithm (abbrev. as CBN-DD) with the al-
gorithm in [Luong et al., 2011] (abbrev. as KNN-DD). We
repeat the test 10 times. The average number of tuples iden-
tified as discriminated by the two algorithms as well as the
number of di↵erent judgments for each tuple are shown in
Table 2a. As can be seen, there is significant di↵erence be-
tween the judgments made by the two algorithms.

To measure the accuracy of the discrimination identifica-
tion, we manually modify the dataset to obtain a data with
ground truth. We first create a “clean” dataset by completely
removing the attribute sex from the dataset and randomly as-
signing a gender to each tuple based on the original popu-
lation. The “clean” dataset contains no bias against gender
and hence each tuple can be labeled as “non-discriminated”.
Then, we manually introduce bias into the data. We simulate
a situation where a domain user is responsible for making de-
cisions and has a strong prejudice against females. So, he
changes the decisions of 100 female tuples from positive to
negative. We aim to evaluate how accurately two algorithms
can identify them. For comparison, we also randomly select
another 100 tuples that are labeled “non-discriminated” from
the dataset and add them for testing. Similarly, the test is re-
peated 10 times and the average results of true positive (TP)
and true negative (TN) are shown in Table 2b. It can be seen
that, when K = 50, CBN-DD reports 85.3 tuples as discrim-

inated among the 100 tuples that are true positive, and 77.6
tuples as non-discriminated among the 100 tuples that are true
negative. In general, CBN-DD outperforms KNN-DD in both
TP and TN for various values of K. For CBN-DD, TP de-
creases when K = 10 and K = 90. This is probably because
of the randomness in selecting tuples when K is too small,
and having to select dissimilar tuples when K is too large.
How to suggest an appropriate K is left for future work.

The average CPU time for one target tuple is 0.3s for CBN-
DD and 20.3s for KNN-DD, showing that CBN-DD is much
more computationally e�cient than KNN-DD. Due to the
large computational cost of KNN-DD, we only test 200 tu-
ples in our evaluations.

6 Related Work

A number of data mining techniques have been proposed
to discover discrimination in the literature. Pedreschi et
al. proposed to extract from the dataset classification rules
which represent certain discrimination patterns [Pedreshi et
al., 2008; Pedreschi et al., 2009]. If the presence of the pro-
tective attribute increases the confidence of a classification
rule, it indicates possible discrimination in the data set. Based
on that, [Mancuhan and Clifton, 2014] further proposed to
use the Bayesian network to compute the confidence of the
classification rules for detecting discrimination. Di↵erently,
conditional discrimination, where part of discrimination may
be explained by other legally grounded attributes, was studied
in [Zliobaite et al., 2011; Hajian et al., 2015]. [Bonchi et al.,
2015] proposed a random walk method based on the Suppes-
Bayes causal network. In [Wu and Wu, 2015], the authors
proposed the use of loglinear modeling to capture and mea-
sure discrimination and developed a method for discrimina-
tion prevention by modifying significant coe�cients from the
fitted loglinear model. All the above work su↵er from legal
weaknesses. Our work follows [Luong et al., 2011], which is
based on the legally grounded situation testing methodology.

Another issue related to anti-discrimination is discrimina-
tion prevention, which aims to build non-discriminatory pre-
dictive models when the historical data contains discrimina-
tion [Kamiran and Calders, 2009; 2012; Calders and Verwer,
2010; Kamishima et al., 2011]. In all the proposed meth-
ods, discrimination needs to be identified and measured first
before it can be removed. Our work complements discrimina-
tion prevention in that we provide technique for capturing and
measuring discrimination, which advances the understanding
related to both discrimination discovery and prevention.

7 Conclusions

In this paper, we have investigated the discrimination discov-
ery problem on the basis of the situation testing methodology.
We improve the method in [Luong et al., 2011] with the sup-
port of the CBN. We have defined a distance function on the
direct causes of the decision, which takes into consideration
the value di↵erence as well as the causal e↵ect of each at-
tribute on the decision. The empirical assessments using the
real data have been conducted. The results show that both the
identification accuracy and e�ciency have been significantly
improved with our proposed algorithm.
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