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Abstract
Fairness-aware learning studies the problem of
building machine learning models that are subject
to fairness requirements. Counterfactual fairness
is a notion of fairness derived from Pearl’s causal
model, which considers a model is fair if for a par-
ticular individual or group its prediction in the real
world is the same as that in the counterfactual world
where the individual(s) had belonged to a differ-
ent demographic group. However, an inherent lim-
itation of counterfactual fairness is that it cannot
be uniquely quantified from the observational data
in certain situations, due to the unidentifiability of
the counterfactual quantity. In this paper, we ad-
dress this limitation by mathematically bounding
the unidentifiable counterfactual quantity, and de-
velop a theoretically sound algorithm for construct-
ing counterfactually fair classifiers. We evaluate
our method in the experiments using both synthetic
and real-world datasets, as well as compare with
existing methods. The results validate our theory
and show the effectiveness of our method.

1 Introduction
It is important to develop fairness-aware machine learning al-
gorithms and models such that the decisions made with their
assistance are subject to fairness requirements. In recent
years, the research community has studied fairness-aware
machine learning from the causal perspective [Zhang et al.,
2017b; Zhang et al., 2017a; Zhang and Bareinboim, 2018;
Nabi and Shpitser, 2018; Zhang et al., 2018b; Zhang et al.,
2018a] using causal modeling [Pearl, 2009]. In these works,
fairness is generally formulated and quantified as the aver-
age causal effect of the sensitive attribute on the decision at-
tribute. The effect is evaluated by the intervention through
the post-interventional distributions. Different from above
works, [Kusner et al., 2017] introduced counterfactual fair-
ness, based on the counterfactual inference, which considers
the causal effect within a particular individual/group specified
by of observational profile attributes. The notion of counter-
factual fairness is more general than the intervention-based
notions where the set of profile attributes is empty. Con-
sequently, the counterfactual inference is more challenging

than the intervention. This is because measuring interven-
tions only considers the post-interventional distributions, but
counterfactual inference considers both the real world with-
out the intervention and the counterfactual world with the in-
tervention. Researchers have proved that the counterfactual
quantity cannot be uniquely computed from the observational
data in some situations, which are referred to as the unidenti-
fiable situations [Pearl, 2009].

The unidentifiable situations are big barriers to the appli-
cation of counterfactual fairness. In [Kusner et al., 2017], the
authors proposed three methods to evade the unidentifiabil-
ity issue: 1) only non-descendants of the sensitive attribute
are used in classification, 2) the non-deterministic substitu-
tions of the hidden variables are postulated and inferred based
on domain knowledge, or 3) the complete causal model is
postulated and estimated, e.g., , being treated as the additive
noise model then estimating the errors. However, the sensi-
tive attribute is usually an inherent nature of data hence many
attributes are its descendants. If all descendants are forbid-
den, very few attributes are allowed for classifier training,
weakening the resultant fair classifier dramatically. Also, it is
over-simplified to postulate the substitutions and their distri-
butions, since the exogenous variables represent all possible
sources of randomness; or presuppose that the causal model,
which is supposed to represent the underlying mechanism of
the world, is an additive model.

In this paper, we address the problem of learning coun-
terfactually fair classifiers by mathematically bounding the
unidentifiable counterfactual quantity. We leverage the coun-
terfactual graph proposed in [Shpitser and Pearl, 2008] for
depicting the independence relationships among variables in
the real world and the counterfactual world which are of
concern in the counterfactual quantity. Then, we adopt the
c-component factorization to decompose the counterfactual
quantity, and identify the terms that are the source of unidenti-
fication. We propose a graphical criterion for determining the
identification of counterfactual fairness and develop the lower
and upper bounds of counterfactual fairness in unidentifiable
situations. Finally, we propose a post-processing method for
reconstructing arbitrary classifiers in order to achieve coun-
terfactual fairness. We formulate the reconstruction prob-
lem as a linear constrained optimization problem with the
bounded counterfactual fairness criterion as the constraints.

In the experiments, we evaluate our methods and compare
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them with existing ones using real-world datasets and syn-
thetic datasets where the ground-truth of counterfactual fair-
ness can be precisely quantified. The results show that our
method correctly achieves counterfactual fairness as expected
according to our theorem, while obtaining high accuracy of
prediction. On the contrary, the methods proposed in [Kusner
et al., 2017] either fail to achieve counterfactual fairness or
suffer from low accuracy due to simplified assumptions.

2 Preliminaries
2.1 Structural Causal Model and Intervention
Definition 1 (Structural Causal Model). A structural causal
modelM is represented by a triple 〈U, P (U),V,F〉 where

1. U is a set of exogenous variables of any types, i.e., dis-
crete, continuous, or mixed. An arbitrary joint probabil-
ity distribution P (U) is defined over U.

2. V is a set of endogenous variables that are determined
by variables in U ∪V.

3. F is a set of functions mapping from U∪V to V. Specif-
ically, for eachX ∈ V, there is a function fX ∈ F map-
ping from U∪(V\X) toX , i.e.,X = fX(Pa(X),UX),
where Pa(X) ⊆ V \ X stands for the endogenous
variables that directly determine the value of X , and
UX ⊆ U represents all sources of randomness.

A causal model is associated with a causal graph G where
each node corresponds to a variable in V 1, and each edge,
denoted by an arrow, points from a node X to another node
Y if X is an input of fY . In this manuscript, we focus on the
Markovian causal model where all exogenous variables are
independent. Thus, the causal graph is simplified by omitting
all exogenous variables and the edges associated with them.
For any set of nodes X, we use Pa(X)G , Ch(X)G , An(X)G ,
and De(X)G to denote the sets of parents, children, ancestors,
and descendants of X in G.

In the causal model, the quantitative measure of causal
effects is facilitated by interventions through do-calculus
[Pearl, 2009], which simulates the physical interventions
that force some variable X to take certain values x. For-
mally, the intervention that fixes the value of X to x is de-
noted by do(x). The mathematical meaning of do(x) in a
causal model M is defined as the substitution of equation
X = fX(Pa(X)G ,UX) with X = x. The causal model after
performing do(x) is called a submodel denoted byMx. For
another endogenous variable Y which is affected by the inter-
vention, its interventional variant in submodelMx is denoted
by Yx. The distribution of Yx, called the post-intervention
distribution of Y under do(x), is denoted by P (yx). For
simplicity, we rewrite P (yx) as Px(y), meaning the distri-
bution of (the variant of) Y in submodelMx. Similarly, we
can rewrite the condition distribution of Yx given Zx, i.e.,
P (yx|zx), as Px(y|z). Pearl [Pearl, 2009] proposed three
rules of do-calculus to infer post-intervention distributions
from observational data, by converting post-intervention dis-
tributions to observational distributions.

1An uppercase letter denotes an attribute and a lowercase letter
denotes an attribute value. Similarly, a bold uppercase letter denotes
a set of attributes and a bold lowercase letter denotes a set of values.

2.2 Counterfactual Inference and Unidentification
In Section 2.1, the causal effect is estimated using inter-
vention where the post-intervention distribution concerns the
counterfactual world represented by submodel Mx only. If
we infer the post-intervention distribution while condition-
ing on certain individuals or groups specified by a subset of
endogenous variables, the inferred quantity will involve two
worlds simultaneously, the real world represented by causal
modelM, and the counterfactual worldMx, hence cannot be
resolved by do-calculus directly. Such causal inference prob-
lem is called the counterfactual inference, and the distribution
of Yx conditioning on the real world observation O = o is
denoted by P (yx|o). Note that Yx is a variable in submodel
Mx, while O are variables in original causal modelM.

Apparently, inferring P (yx|o) requires to know the con-
nection between the real world and the counterfactual world.
This can be done if we have complete knowledge of the causal
model. According to [Pearl, 2009], the counterfactual infer-
ence can be exactly performed using three steps if the com-
plete model, including all the structural equations, is known:
1. Abduction: Update P (u) by observation O = o to ob-
tain P (u|o). 2. Action: ModifyM by intervention do(x) to
obtain the submodelMx. 3. Prediction: Use modified sub-
model 〈Mx, P (u|o)〉 to compute the probability of Yx,, i.e.,
the consequence of the counterfactual inference.

The above method is usually infeasible in practice due to
the lack of the complete knowledge of the causal model. If we
only have the causal graph and observational data, which is a
common scenario in the literature, the counterfactual quantity
might be evaluated by using the IDC* algorithm developed
in [Shpitser and Pearl, 2008]. However, in certain situations
where the IDC* algorithm fails, the corresponding counter-
factual quantity cannot be uniquely computed from the obser-
vational data in theory. These situations are referred to as the
unidentifiable situations. One typical unidentifiable situation
[Shpitser and Pearl, 2008] is shown in Lemma 1.
Lemma 1. Let X,Y be two variables such that Y is a parent
of X , then P (Y = y, Yx = y′) is unidentifiable if y 6= y′.

3 Quantifying and Bounding Counterfactual
Fairness

Fairness-aware learning is widely studied using causal mod-
eling to capture the causal connection between the sensitive
attribute and the challenged decision [Kilbertus et al., 2017;
Li et al., 2017; Zhang et al., 2017b; Zhang and Bareinboim,
2018; Nabi and Shpitser, 2018; Chiappa, 2019; Kusner et al.,
2017]. We adopt the notion of counterfactual fairness pro-
posed in [Kusner et al., 2017], which formulates fairness as
the equivalence of two counterfactual quantities. Although
this notion captures the true intuition behind fairness, it faces
significant computational challenges due to the unidentifiabil-
ity of counterfactual inference. In this section, we first give
the formal definition of counterfactual fairness for predictive
models and explain its physical meaning. Then, we show how
to address above challenges by mathematically bounding the
unidentifiable counterfactual quantity.

In our notations, S ∈ {s+, s−} denotes the sensitive at-
tribute, Y ∈ {y+, y−} denotes the decision, and X denotes
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(a) (b)

Figure 1: (a) Causal Graph G. (b) Counterfactual Graph G′ for
P (ŷs|s′, z).

the set of other attributes. The historical dataset D drawn
from a distribution P (X, S, Y ) is used to train a classifier
f : X, S → Ŷ . The underlying mechanism that determines a
distribution P (X, S, Ŷ ) is represented by a causal modelM.
The causal graph associated with the causal model is denoted
by G. Then, counterfactual fairness is defined as follows.
Definition 2. (Counterfactual Fairness) Given a set of at-
tributes Z ⊆ X, a classifier f : X, S → Ŷ is counterfactu-
ally fair w.r.t. Z, if under any observational condition Z = z
we have

P (ŷs′ |s′, z) = P (ŷs|s′, z), where s′, s ∈ {s+, s−}.
Recall that a lowercase letter with a subscript represents

a value assignment to the corresponding variable in the sub-
model, e.g., ŷs is a value of Ŷs in the submodelMs.

The physical meaning of counterfactual fairness can be in-
terpreted as follows. Consider candidates are applying for a
job and a predictive model is used to make the decision Ŷ .
We concern an individual from disadvantage group s− who
is specified by a profile z. Straightforwardly, the probability
of the individual to get the positive decision is P (ŷ|s−, z),
which is equivalent to P (ŷs− |s−, z) since the intervention
makes no change to S’s value of that individual. Now as-
sume the value of S for this very individual had been changed
from s− to s+. The probability of this individual to get the
positive decision after the hypothetical change is given by
P (ŷs+ |s−, z). Therefore, if two probabilities P (ŷs− |s−, z)
and P (ŷs+ |s−, z) are identical, we can claim the individual
is treated fairly as if he/she had been from the other group.

3.1 Identification of Counterfactual Quantity
In this section, we identify the source of unidentification for
the counterfactual quantity and give a graphical criterion de-
termining the identifiability of the counterfactual quantity.
Our method is inspired by the IDC* algorithm and we fur-
ther extend it to bound the unidentifiable quantity.

The analysis of P (ŷs|s′, z) concerns the connection be-
tween two causal models, M and Ms. Thus, we apply the
make-cg algorithm [Shpitser and Pearl, 2008] to the causal
graph G to construct a new graph G′ that depicts the indepen-
dence relationship among all variables inM andMs that are
of concern in the analysis. The make-cg algorithm first com-
bines the two causal graphs and makes them share the same

exogenous variables U, corresponding to the shared causal
context or background. Then, it removes the duplicated en-
dogenous nodes which are also not affected by do(s). The re-
sultant graph is the so-called counterfactual graph. Next, we
apply the c-component factorization [Tian and Pearl, 2002]
to decompose counterfactual graph G′ into disjoint subgraphs
called the c-components, such that any two nodes in the same
c-component are connected by a bi-directed path2. After that,
the joint distribution of all variables in the counterfactual
graph can be factorized as the product of the conditional dis-
tribution of each c-component. Our theoretical analysis will
show that if certain c-component has the unidentifiability is-
sue that cannot be resolved by summation, the corresponding
counterfactual quantity is unidentifiable. Without loss of gen-
erality, we first use an example to illustrate our idea. Consider
the causal graph G shown in Figure 1 (a) where there are five
attributes A,B,C, S, Ŷ : S is the sensitive attribute; Ŷ is the
prediction of the decision attribute obtained by any classifier;
A is the ancestor of Ŷ but not the descendant of S; B is the
intersection between the ancestor of Y and the descendant of
S; and C is the descendant of S but not the ancestor of Ŷ .
We aim to study the identifiability of P (ŷs|s′, z), where Z is
an arbitrary subset of {A,B,C}.

The counterfactual graph denoted by G′ is shown in Fig-
ure 1 (b), where the bi-directed dash edge implies that the two
nodes share the same exogenous variables. Note that A and
As are merged asA since they are duplicated. Next, we apply
the c-component factorization. In Figure 1 (b), there are five
c-components: 〈A〉, 〈S〉, 〈B,Bs〉, 〈C,Cs〉, and 〈Ŷ , Ŷs〉. We
can factorize P (ŷs, s

′, z) as

P (ŷs, s
′, z) =

∑
x\z,ŷ,b′,c′

R(a)R(s′)R(c, c′s)R(b, b′s)R(ŷ′, ŷs),

where R(w) = P
(
w|Pa(W)G′

)
for any node set W, x =

{a, b, c}, and z is any subset of x. Then, we can derive that

P (ŷs|s′, z) =

∑
x\z,ŷ,b′,c′

[
P (a)P (s′|a)P (c,c′s|s

′,a)

P (b,b′s|s
′,a)P (ŷ′,ŷs|a,b,b′s)

]
P (s′, z)

.

Note that c′s in P (c, c′s|s′, a) and ŷ′ in P (ŷ, ŷs|a, b, b′s)
can be canceled out by summation. By applying the m-
separation, we can remove b from P (ŷs|a, b, b′s), as B is d-
separated from Ŷs conditioning onA andBs. Thus, we obtain

P (ŷs|s′, z) =

∑
x\z,b′

[
P (a)P (s′|a)P (c|s′,a)
P (b,b′s|s

′,a)P (ŷs|a,b′s)

]
P (s′, z)

. (1)

To further analyze Eq. (1), we consider two cases below.
Case 1 (B /∈ Z): In this case, we have b under the Σ of

Eq. (1), hence b in P (b, b′s|s′, a) can be canceled out by sum-
mation, resulting in P (b′s|s′, a). Then, we can remove s′ from
P (b′s|s′, a) as Bs is d-separated from S conditioning on A,
resulting in P (b′s|a). We can further rewrite P (ŷs|a, b′s) as
Ps(ŷ|a, b′), and rewrite P (b′s|a) as P (b′s|a). At last, we in-
voke do-calculus Rule 2 [Pearl, 2009] to convert Ps(ŷ|a, b′)

2A bi-directed path is a path consisting of bi-directed edges only.
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to P (ŷ|a, b′, s), and Ps(b
′|a) to P (b′|a, s). Finally, we obtain

P (ŷs|s′, z) =

∑
x\z\{b},b′ P (s′, a, c)P (b′|a, s)P (ŷ|a, b′, s)

P (s′, z)

=

∑
x\z\{b} P (s′, a, c)P (ŷ|a, s)

P (s′, z)
. (2)

Case 2 (B ∈ Z): In this case, since we don’t have b under
the Σ, term P (b, b′s|s′, a) cannot be reduced, resulting in

P (ŷs|s′, z)=

∑
x\z,b′ P (s′, a, c)P (b, b′s|a, s′)P (ŷ|a, b′, s)

P (s′, z)
. (3)

From above two cases we see that, P (ŷs|s′, z) in Case 1 is
identifiable as all terms in Eq. (2) can be read from observa-
tional data. One can verify that this result is consistent with
the IDC* algorithm. However in Case 2, since P (b, b′s|s′, a)
in Eq. (3) is unidentifiable according to Lemma 1, P (ŷs|s′, z)
is also unidentifiable. In this example, the identifiability of
P (ŷs|s′, z) depends on whether node B, the intersection of
S’s descendants and Ŷ ’s ancestors, is in set Z or not. We
summarize this result as follows.
Proposition 1. For the causal graph in Figure 1 (a),
P (ŷs|s′, z) is unidentifiable if and only if B ∈ Z.

3.2 Bounding Unidentifiable Counterfactual
Quantity

In Eq. (3), we identify the source of unidentifiability. Next,
we derive the lower and upper bounds for P (ŷs|s′, z) as
shown in the following proposition, which works for both
identifiable and unidentifiable situations.
Proposition 2. For the causal graph in Figure 1 (a) we have

P (ŷs|s′, z) ≤
∑

x\z P (s′,x) maxm′ {P (ŷ|s, a, b′)}
P (s′, z)

, (4)

P (ŷs|s′, z) ≥
∑

x\z P (s′,x) minm′ {P (ŷ|s, a, b′)}
P (s′, z)

, (5)

where x = {a, b, c}, z is any subset of x, and M = {B}∩Z.

Proof. Suppose B ∈ Z, then M = {B}. Obviously, we have
P (ŷ|s, a, b′) ≤ max

b′
{P (ŷ|s, a, b′)} .

By applying this inequality to Eq. (3), we have
P (ŷs|s′, z)

≤
∑

x\z P (s′, a, c) maxb′ {P (ŷ|s, a, b′)}
∑

b′ P (b, b′s|s′, a)

P (s′, z)

=

∑
x\z P (s′, a, c)P (b|s′, a) maxb′ {P (ŷ|s, a, b′)}

P (s′, z)

=

∑
x\z P (s′,x) maxb′ {P (ŷ|s, a, b′)}

P (s′, z)
.

The second step is due to the condition
∑

b′ P (b, b′s|s′, a) =
P (b|s′, a), and the third step is due toB ⊥ C|A,S. Similarly,
we can replace max with min to obtain Eq. (5).

If B /∈ Z, M = ∅. Then, we have max∅{P (ŷ|s, a, b′)} =
min∅{P (ŷ|s, a, b′)} = P (ŷ|s, a) and both Eq. (4) and

Eq. (5) become
∑

x\z\{b} P (s′,a,c)P (ŷ|s,a)
P (s′,z) , which is consistent

with the identifiable situations (i.e., Eq. (2)).

3.3 Extending to General Case
Above results can be extended to the general case. Let A
denote the ancestors of Ŷ which are not the descendants of
S, B denote the intersection between the ancestors of Ŷ and
the descendants of S, C denote the descendants of S which
are not the ancestors of Ŷ , i.e.,

A = An(Ŷ )G \ De(S)G , B = An(Ŷ )G ∩ De(S)G ,

C = De(S)G \ An(Ŷ )G .

Note that A,B,C are disjoint and X = A∪B∪C. Now we
are ready to extend Propositions 1 and 2 to the general case.
Theorem 1. (Identification of Counterfactual Quantity)
Given a causal graph G and the set of profile attributes Z,
the counterfactual quantity P (ŷs|s′, z) is unidentifiable if and
only if B ∩ Z 6= ∅.
Theorem 2. (Bounds of Counterfactual Quantity) Given a
causal graph G and a set of profile attributes Z, we have

P (ŷs|s′, z) ≤

∑
x\z

[
P (s′,x)

maxm′{P (ŷ|s,pa(Ŷ)G∩m
′,pa(Ŷ)G\{s,m

′}}
]

P (s′, z)
,

P (ŷs|s′, z) ≥

∑
x\z

[
P (s′,x)

minm′{P (ŷ|s,pa(Ŷ)G∩m
′,pa(Ŷ)G\{s,m

′}}
]

P (s′, z)
,

where we partition B to two disjoint sets: a set M ∈ Z and
a set N /∈ Z such that M = B ∩ Z,N = B \ Z.

The proofs are similar to the previous ones.

4 Achieving Counterfactual Fairness in
Classification

The derived bounds clear the path towards constructing coun-
terfactually fair classifiers. In this section, we propose a post-
processing method for reconstructing any classifier to achieve
counterfactual fairness. To this end, we first give a relaxed
quantitative criterion of fairness based on Definition 2.
Definition 3 (τ -Counterfactual Fairness). Given a profile at-
tribute set Z ⊆ X and a threshold τ , a classifier f : X, S →
Ŷ is counterfactually fair if under any condition Z = z,∣∣DE(ŷs−→s+ |z)

∣∣ ≤ τ,
where DE(ŷs−→s+ |z) = P (ŷs+ |s−, z)− P (ŷs− |s−, z).

In above definition,
∣∣DE(ŷs−→s+ |z)

∣∣ captures the amount
of unfairness or discrimination of a classifier in terms of the
difference in the positive decision rate for a certain group of
individuals (specified by z) between the counterfactual world
(where they had been changed to s+) and the real world
(where they are actually in s−). If the amount of unfairness of
a classifier is smaller than τ , we claim this classifier is (coun-
terfactually) fair. Note that the first term P (ŷs+ |s−, z) has the
identification issue, but the second term P (ŷs− |s−, z) simply
equals to P (ŷ|s−, z) since the intervention do(s−) makes no
change to the value of S for this group. By denoting the up-
per and lower bounds of P (ŷs+ |s−, z) obtained in Theorem
2 as ub(P (ŷs+ |s−, z)) and lb(P (ŷs+ |s−, z)) respectively, we
obtain the bounds of DE(ŷs−→s+ |z) as follows.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1441



Corollary 1. (Bounds of Counterfactual Fairness)
The upper and lower bounds of counterfactual fairness
DE(ŷs−→s+ |z) are given by

ub (DE(ŷs−→s+ |z)) = ub
(
P (ŷs+ |s−,z)

)
−P (ŷ|s−,z), (6)

lb (DE(ŷs−→s+ |z)) = lb
(
P (ŷs+ |s−,z)

)
−P (ŷ|s−,z). (7)

Corollary 1 can facilitate the detection of unfair-
ness from observational data. Specifically, if we have
ub (DE(ŷs−→s+ |z)) ≤ τ and lb (DE(ŷs−→s+ |z)) ≥
−τ , then it is guaranteed that τ -counterfactual fairness
is satisfied. If we have ub (DE(ŷs−→s+ |z)) ≤ −τ or
lb (DE(ŷs−→s+ |z)) > τ , then it is guaranteed that τ -
counterfactual fairness cannot be satisfied. Otherwise, it is
uncertain and cannot be determined from data.

Based on Corollary 1, we then propose an efficient method
for constructing counterfactually fair classifiers. Note that
the bounds are consistent with identifiable situations, so the
method works for both identifiable/unidentifiable situations.

We consider to construct a new decision variable Ỹ from
Ŷ in the causal model such that τ -counterfactual fairness
regarding Ỹ is satisfied. The objective is to find an opti-
mal probabilistic mapping function P (ỹ|ŷ, pa(Ŷ )G) that min-
imizes the difference between Y and Ỹ , measured by the em-
pirical loss ED[`(Y, Ỹ )], meanwhile, the new decisions are
counterfactually fair. The formulation of this optimization
problem is given below.
Problem Formulation 1. Given a dataset D with prediction
Ŷ made by an arbitrary classifier, we aim to learn a post-
processing mapping function P (ỹ|ŷ, pa(Ŷ )G) by solving the
following optimization problem:

min ED[`(Y, Ỹ )]

s.t. for any z :

ub (DE(ỹs−→s+ |z)) ≤ τ, lb (DE(ỹs+→s− |z)) ≥ −τ,∑
ỹ

P (ỹ|ŷ, pa(Ŷ )G) = 1, 0 ≤ P (ỹ|ŷ, pa(Ŷ )G) ≤ 1,

where `(Y, Ỹ ) is the 0-1 loss function.
It is easy to show that Problem Formulation 1 is a lin-

ear programming problem with P (ỹ|ŷ, pa(Ŷ )G) as vari-
ables. Note that distribution P (ỹ|pa(Ŷ )G) can be obtained by
P (ỹ|pa(Ŷ )G) =

∑
ŷ P (ŷ|pa(Ŷ )G)P (ỹ|ŷ, pa(Ŷ )G). Thus,

all constraints are linear w.r.t. P (ỹ|ŷ, pa(Ŷ )G). On the other
hand, for the objective function we have

ED[`(Y, Ỹ )] =
∑

y,ỹ∈{y+,y−}

`(y, ỹ)P (ỹ, y) = 2P (ỹ 6= y).

And we also have

P (ỹ 6= y) = P (ŷ 6= y)P (ỹ = ŷ) + P (ŷ = y)P (ỹ 6= ŷ)

=
∑
x,s

P (x, s)

[
P (ŷ 6= y|x, s)

[
P (ỹ=y−|ŷ=y−,x,s)

P (ŷ=y−|x,s) +P (ỹ=y+|ŷ=y+,x,s)

P (ŷ=y+|x,s)

]
+ P (ŷ = y|x, s)

[
P (ỹ=y+|ŷ=y−,x,s)

P (ŷ=y−|x,s) + P (ỹ=y−|ŷ=y+,x,s)

P (ŷ=y+|x,s)

] ]

(a) (b)

Figure 2: (a) Causal graph for the synthetic data. (b) Causal graph
for the Adult data. Dashed nodes represent the exogenous variables.
Bold nodes represent the profile attributes in Z.

In the above expression, all probabilities except P (ỹ|ŷ,x, s)
are read from the training setD, making it a linear expression
of P (ỹ|ŷ,x, s).

5 Experiments
We evaluate our method and compare it with previous meth-
ods on two datasets. To show the correctness of our method,
we generate a synthetic dataset from a known causal model
with complete knowledge in our evaluation. We also use the
Adult dataset [Lichman, 2013] to evaluate these methods in a
real-world environment. We evaluate four methods for con-
structing classifiers: (1) the original learning algorithm with-
out fairness constraints as the baseline (denoted by BL); (2)
two methods (denoted by A1 and A3) from [Kusner et al.,
2017] where A1 uses non-descendants of S only for building
classifiers, and A3 presuppose the additive noise model for
estimating the noise terms, which are then used for building
classifiers; (3) our method (denoted as CF). By default, the
discrimination threshold τ is set as 0.05.

# of z DE(ŷs−→s+ |z)
ub lb Truth

1 0.399 0.105 0.328
2 0.471 0.177 0.467
3 0.147 -0.082 -0.038
4 0.374 0.145 0.145

Table 1: Bounds and ground truth of counterfactual fairness for all
value combinations of Z using the synthetic data.

5.1 Datasets
Synthetic Data. We manually build a causal model (where
all variables are discrete) with complete knowledge of the ex-
ogenous variables and the functions (i.e., the contingency ta-
ble) using Tetrad [Scheines et al., 1998]. The corresponding
causal graph is shown in Figure 2a. This causal model con-
sists of 5 endogenous variables, A, S, M , N , Y , and 5 in-
dependent exogenous variables, UA, US , UM , UN , UY . For
simplicity, all endogenous variables have two domain values
and all exogenous variables have three domain values. The
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# of z LR SVM
BL A1 A3 CF BL A1 A3 CF

1 0.000 0.000 -0.233 0.049 0.114 0.000 0.174 0.049
2 1.000 0.000 1.000 0.049 0.762 0.000 0.648 0.049
3 0.000 0.000 0.000 0.000 -0.021 0.000 -0.021 0.000
4 1.000 0.000 0.000 0.048 1.000 0.000 0.000 0.048

Table 2: Counterfactual fairness for prediction of the synthetic data.
Values violating the threshold are highlighted in bold.

Accu. (%) Data BL A1 A3 CF

LR Train 60.103 55.760 59.433 61.987
Test 60.421 56.563 59.713 62.512

SVM Train 65.710 55.760 62.466 61.977
Test 65.841 56.563 62.542 62.463

Table 3: Prediction accuracy for the synthetic data.

distributions of the exogenous variables and the deterministic
functions of the endogenous variables are randomly assigned.
Then, we generate 100,000 examples from this causal model
and split the data into training and testing sets with a ratio of
80/20. We consider S as the sensitive attribute and Y as the
decision attribute. The profile attribute set Z contains A,M .

Adult Data. This dataset consists of 65,123 records with
11 attributes including education, sex, income etc.. We se-
lect 7 attributes, binarize their domain values, and split the
dataset into the training and testing sets, following the 80/20
ratio. We apply the PC algorithm implemented in Tetrad to
build the causal graph while the significant threshold is set as
0.01 for conditional independence testing. We use three tiers
in the partial order for temporal priority: sex, age in Tier 1,
education, marital-status and workclass are defined in Tier 2,
and income defined in Tier 3. The causal graph is shown in
Figure 2b, where sex is considered as the sensitive attribute
and income is the decision attribute. age, education, marital-
status, and workclass are contained the profile attributes Z.

5.2 Experiment on Synthetic Data
Quantifying Counterfactual Fairness. According to The-
orem 1, the counterfactual fairness quantity is unidentifiable
in this dataset. We evaluate the bounds of counterfactual fair-
ness using Theorem 2. The ground truth (i.e., the exact values
of all counterfactual quantities) is computed by applying the
Abduction-Action-Prediction method. The results are shown
in Table 1, where the first column indicates the indices of
z’s value combinations. As can be seen, the exact values of
DE(ŷs−→s+ |z) fall into the range of our bounds for all value
combinations of Z, which validates our theorem.

Building Counterfactually Fair Classifiers. We then eval-
uate the classifier learning methods. For the baseline method,
we adopt the logistic regression (LR) and support vector ma-
chine (SVM). Then, we apply A1, A3, and CF on top of
both classifiers. The counterfactual fairness is precisely eval-
uated and shown in Table 2 for all the methods using the
Abduction-Action-Prediction method. The predictive accu-
racy is reported in Table 3. As expected, both A1 and CF
achieve fairness, but our method achieves higher accuracy
than A1, implying that A1 loses more information. On the

# of z BL A1 A3 CF
ub lb val ub lb ub lb

L
R

2 0.321 0.000 0.000 -1.000 -1.000 -0.007 -0.047
4 0.523 0.000 0.000 -1.000 -1.000 0.038 -0.027

13 1.000 0.304 0.000 0.000 -1.000 0.049 -0.016
15 1.000 0.398 0.000 0.000 -1.000 0.050 -0.007

SV
M

2 0.135 -0.186 0.000 -0.186 -0.186 -0.007 -0.047
4 0.283 -0.240 0.000 -0.240 -0.240 0.038 -0.027

13 0.866 0.170 0.000 0.866 0.170 0.049 -0.016
15 0.907 0.305 0.000 0.907 0.305 0.050 -0.007

Table 4: Counterfactual fairness for prediction of the Adult data.

Accu. (%) D BL A1 A3 CF

LR Train 77.728 67.624 74.845 70.433
Test 77.200 66.934 73.867 69.451

SVM Train 78.071 67.624 77.845 70.413
Test 77.449 66.934 77.166 69.438

Table 5: Prediction accuracy for the Adult data.

other hand, we see that BL fails to achieve counterfactual
fairness, because it ignores the fairness during the training.
In addition, A3 also fails to achieve counterfactual fairness.
This implies that assuming additive model may produce bi-
ased results when the underlying causal model is non-linear.

5.3 Experiment on Adult Dataset
We evaluate the fair classifier learning methods using the
Adult dataset. Since we don’t have the ground truth, we re-
port bounds of counterfactual fairness for different methods.
Table 4 shows that only A1 and CF can achieve counterfac-
tual fairness for all value combinations of Z, but our CF con-
sistently achieves higher accuracy than A1 as shown in Table
5. This is as expected since A1 is proved to be fair in [Kusner
et al., 2017] (and also identifiable according to Theorem 1),
but will inevitably lead to lower accuracy as only S’s non-
descendants are used. For BL and A3 in Table 4, either the
lower bound is larger than τ or the upper bound is less than
−τ , indicating the τ -counterfactual fairness is not achieved.

6 Conclusion
We focus on the unidentifiability challenge when applying
counterfactual fairness in practice. We decompose the coun-
terfactual quantity and identify the source of unidentification
by leveraging the counterfactual graph and c-component fac-
torization from Pearl’s framework. We then develop the cri-
terion of identification and the upper/lower bounds for coun-
terfactual fairness. Finally, we formulate counterfactually
fair classification as a linear programming problem. Empir-
ical evaluations show our method is guaranteed to achieve
counterfactual fairness in classification, while previous ap-
proaches either cannot achieve counterfactual fairness or suf-
fer bad performance due to over-simplified assumptions.
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