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ABSTRACT
In this paper, we study the fairness-aware classification problem

by formulating it as a constrained optimization problem. Several

limitations exist in previous works due to the lack of a theoreti-

cal framework for guiding the formulation. We propose a general

fairness-aware framework to address previous limitations. Our

framework provides: (1) various fairness metrics that can be incor-

porated into classic classification models as constraints; (2) the con-

vex constrained optimization problem that can be solved efficiently;

and (3) the lower and upper bounds of real-world fairness measures

that are established using surrogate functions, providing a fairness

guarantee for constrained classifiers. Within the framework, we

propose a constraint-free criterion under which any learned classi-

fier is guaranteed to be fair in terms of the specified fairness metric.

If the constraint-free criterion fails to satisfy, we further develop the

method based on the bounds for constructing fair classifiers. The

experiments using real-world datasets demonstrate our theoretical

results and show the effectiveness of the proposed framework.

CCS CONCEPTS
•Theory of computation→Convex optimization; •Comput-
ing methodologies → Supervised learning by classification;
• Applied computing→ Law, social and behavioral sciences.
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Fairness-aware machine learning; classification;constrained opti-

mization; algorithmic bias
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1 INTRODUCTION
Fairness-aware classification is receiving increasing attention in

the machine learning fields. Since the classification models seek to

maximize the predictive accuracy, individuals may get unwanted

digital bias when the models are deployed for making predictions.

As fairness becomes a more and more important requirement in

machine learning, it is imperative to ensure that the learned clas-

sification models can strike a balance between accurate and fair

predictions. Previous works on this topic can be mainly categorized

into two groups: the in-processing methods which incorporate
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the fairness constraints into the classic classification models (e.g.,

[5, 7, 8, 18, 19]), and the pre/post-processing methods which modify

the training data and/or derive fair predictions based on the poten-

tially unfair predictions made by the classifier (e.g., [4, 6, 21–23]).

In this work, we focus on the in-processing methods.

Very recently, several works have been proposed for formulat-

ing the fairness-aware classification as constrained optimization

problems [5, 7, 8, 11, 17–19]. Generally, they aim to minimize a loss

function subject to certain fairness constraints, e.g., demographic

parity (i.e., the difference of the positive predictions between the

sensitive group and non-sensitive group) is less than some threshold.

However, most quantitative fairness metrics such as demographic

parity [14], mistreatment parity [18], etc., are non-convex due to

the use of the indicator function, thus making the optimization

problem intractable. A widely-used strategy to achieve convexity in

optimization is to adopt surrogate functions for both loss function

and constraints. In [19], the authors applied the linear surrogate

functions to non-convex risk difference as the decision boundary

fairness for margin-based classifiers. Similarly in [5], a convex con-

straint is derived from the risk difference. One challenge is that,

when surrogate functions are used to convert non-convex functions

to convex functions, estimation errors must exist due to the differ-

ence between the surrogate function and the original non-convex

function. Thus, achieving the fairness constraints represented by

surrogate functions does not necessarily guarantee achieving the

real fairness criterion. Hence, how to achieve fairness-aware classi-

fication via constrained optimization still remains an open problem.

In this paper, we propose a general framework for fairness-aware

classification which addresses the gap incurred by the estimation

errors due to the surrogate function. The framework can formulate

various commonly-used fairness metrics (risk difference [13], risk

ratio [13], equal odds [6], etc.) as convex constraints that are then

directly incorporated into classic classification models. Within the

framework, we first present a constraint-free criterion (derived from

the training data) which ensures that any classifier learned from

the data will guarantee to be fair in terms of the specified fairness

metric. Thus, when the criterion is satisfied, there is no need to add

any fairness constraint into optimization for learning fair classifiers.

When the criterion is not satisfied, we need to learn fair classifiers

by solving the constrained optimization problems. To connect the

surrogated fairness constraints to the original non-convex fairness

metric, we further derive the lower and upper bounds of the real

fairness measure based on the surrogate function, and develop

the refined fairness constraints. This means that, if the refined

constraints are satisfied, then it is guaranteed that the real fairness

measure is also bounded within the given interval. The bounds

work for any surrogate function that is convex and differentiable

at zero with the derivative larger than zero. In the experiments, we

evaluate our method and compare with existing works using the

real-world datasets. The results demonstrate the correctness of the
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constraint-free criterion and the superiority of our method over

existing ones in terms of achieving fairness and retaining prediction

accuracy.

2 FAIRNESS-AWARE CLASSIFICATION
In this section we present our fairness-aware classification frame-

work. We first introduce the unconstrained optimization formu-

lation for the classic classification models as proposed in [2], and

then present our constrained optimization formulation for fairness-

aware classification. Throughout the paper, we use the vectorX ∈ X

to denote the features used in classification, and Y ∈ Y = {−1, 1}

to denote the binary label. We denote the sensitive attribute by S ,
assuming that it is associated with two values: sensitive group s−

and non-sensitive group s+. The training data D = {(xi , si ,yi )}Ni=1
is a sample drawn from a unknown but fixed distribution.

2.1 Classification Problem
The learning goal of classification is to find a classifier: f : X 7→

Y that minimizes the average of the classification loss (a.k.a the

empirical loss), given by

L(f ) = EX,Y [1f (x),y ], (1)

where 1[·] is an indicator function. The classification problem can

then be formulated as an optimization problem:

min

f ∈F
L(f ) = min

f ∈F
EX,Y [1f (x),y ].

Directly solving this optimization problem is intractable since the

objective function is non-convex [2]. For efficient computation,

another predictive function h is adopted which is performed in

real number domain R, i.e., h : X 7→ R. By letting f = sign(h), the
empirical loss can be reformulated as

L(f ) = L(h) = EX,Y
[
1
sign

(
h(x)

)
,y

]
(2)

= EX
[
Pr (Y = 1|x)1h(x)<0 + Pr (Y = −1|x)1h(x)>0

]
.

If we replace the indicator function (a.k.a 0-1 loss function) with

a convex surrogate function ϕ, the empirical loss can be rewritten

as

Lϕ (h) = EX
[
Pr (Y = 1|x)ϕ

(
h(x)

)
+
(
1 − Pr (Y = 1|x)

)
ϕ
(
− h(x)

) ]
,

which is known as the ϕ-loss, and the optimization problem is

reformulated as minh∈H Lϕ (h). In the past decades, a number of

surrogate loss functions have been proposed and well studied, such

as the hinges loss, the square loss, the logistic loss, the exponential

loss, etc..

2.2 Fairness-aware Classification Problem
The fairness-aware classification aims to find a classifier that mini-

mizes the empirical loss while satisfying certain fairness constraints.

Several fairness notions or definitions are proposed in the literature,

such as demographic parity [14], mistreatment parity [18], etc..

Demographic parity is the most widely-used fairness notion in

the fairness-aware learning field. It requires the decision made by

the classifier is independent to the sensitive attribute, such as sex

or race. Usually, demographic parity is quantified with regard to

risk difference [13], i.e., the difference of the positive predictions be-

tween the sensitive group and non-sensitive group. For example, in

the context of hiring, risk difference can be given by the probability

difference of being predicted to be hired between male applicants

and female applicants. Using the same language as that in the pre-

vious subsection, the risk difference produced by a classifier f is

expressed as

RD(f ) = EX |S=s+ [1f (x)=1] − EX |S=s− [1f (x)=1]. (3)

As a quantitative metric, we say that classifier f is considered as fair

if |RD(f )| ≤ τ , where τ is the user-defined threshold. For instance,

the 1975 British legislation for sex discrimination sets τ = 0.05.

By directly incorporating the risk difference into the optimization

problem, we formulate the fair classification problem as follows.

Problem Formulation 1. The goal of the fairness-aware clas-
sification is to find a classifier f that minimizes the loss L(f ) while
satisfying fairness constraint |RD(f )| ≤ τ . It can be approached by
solving the following constrained optimization problem

min

f ∈F
L(f ) (4)

subject to RD(f ) ≤ τ , −RD(f ) ≤ τ ,

where L(f ) and RD(f ) are defined in Eq. (1) and Eq. (3).

Obviously, solving the above problem is computationally in-

tractable, since both L(f ) and RD(f ) contain indicator functions.

The real-value function h(x) and the surrogate functions have

been proposed in the recent works [1, 10, 19, 20]. For example,

Zafar et al. [20] have proposed the decision boundary covariance to

quantify the fairness and serve as constraints, which is equivalent

to applying the linear surrogate functions to Problem Formulation 1.

They have set the constraint thresholds as c and −c , which specify

the threshold for the covariance. However, solving the optimization

problem with surrogated constraints does not necessarily result

in a fair classifier in terms of the original non-convex fairness

requirements, e.g., −τ ≤ RD(f ) ≤ τ . In fact, there is no any fairness
guarantee on the produced classifier. We use an example to show

this. Consider two margin-based classifiers where the surrogate

functions are linear functions of the distance from the data point to

the decision boundary. Therefore, the risk difference is computed by

counting the number of data points above and below the decision

boundary, and the surrogated risk difference (a.k.a the decision

boundary covariance) is computed by measuring the average signed

distance from the data points to the decision boundary. In the

dataset shown in Figure 1a, we obtain that the surrogated risk

difference is 0 but the real risk difference is 0.25. This means that a

classier obtained by solving the constrained optimization problem

actually can be very unfair. In the dataset shown in Figure 1b,

the risk difference is 0 but the surrogated risk difference is 0.5,

meaning that some fair classifiers cannot be obtained by solving

the optimization problem with surrogated constraints.

The use of the surrogate function inevitably produces estimation

errors and leads to themismatch between the surrogated constraints

and the original non-convex fairness constraints. Some intuitive

techniques have been introduced to tune the threshold of the sur-

rogated constraints for learning fair classifiers. For example, Zafar

et al. [20] have proposed to build an unconstrained classifier and

consider its risk difference as the initial threshold, say c∗, then
they heuristically select a factorm ∈ [0, 1] and let the threshold



(a) A classifier that meets the
surrogated RD constraint makes
unfair predictions.

(b) A classifier that doesn’t meet the
surrogated RD constraint makes fair
predictions.

Figure 1: Two classifiers and their predictions.

c =m×c∗. However, the relationship between the threshold c of the
surrogated constraints and the hard threshold τ of the original met-

rics is unclear hence users have to repeatedly conduct experiments

on the datasets.

3 CONVEX FAIRNESS CLASSIFICATION
FRAMEWORK

In this section, we propose a general framework for fairness-aware

classification which addresses the gap incurred by the estimation

error due to the use of the surrogate function. Our framework can

formulate various fairness metrics (e.g., risk difference, risk ration,

equal odds, etc.) as convex constraints and incorporate them into

classic classification model. In the following sections, we present

our framework based on the risk difference. In the appendix, we

show how our framework can be easily extended to other fairness

metrics, e.g., risk ratio, equalized odds.

We first present a constraint-free criterion that is derived from

the data. This criterion ensures that any classifier learned from

the data are fair in terms of the specified fairness metric. Then

when this criterion is satisfied, there is no need to incorporate

any fairness constraints for learning fair classification. When this

criterion is not met, we formulate the fairness-aware classification

task as a convex optimization problem. To fill the gap between the

surrogated constraints and the real fairness metrics, we derive the

upper and lower bounds for the real fairness metrics and further

develop refined convex constraints. If the refined constraints are

satisfied, it is guaranteed that the original non-convex fairness

requirements are satisfied, e.g., −τ ≤ RD(f ) ≤ τ .

3.1 Constraint-free Criterion
We propose a constraint-free criterion to determine whether the

fairness constraints are necessary. As discussed in Section 2.1, the

unconstrained classification problem is well studied and users can

safely apply the classic methods for building a fair classifier.

We first define two special classifiers fmax and fmin which

obtain the maximal and the minimal risk differences respectively.

Definition 1. The maximal risk difference classifier fmax and the
minimal risk difference classifier fmin are defined as:

fmax(x) =

{
1 if η(x) ≥ p,

−1 otherwise,
fmin(x) =

{
−1 if η(x) ≥ p,

1 otherwise,

where we denote P(S = s+ |x) by η(x) and P(S = s+) by p.

These two classifiers provide the maximum and minimum of

risk difference among all classifiers f out of the model space F :

Theorem 1. For any classifier f , it always holds that RD− ≤

RD(f ) ≤ RD+, where RD− = RD(fmin) and RD+ = RD(fmax).

The proof of Theorem 1 is included in the appendix. From Theo-

rem 1, we directly obtain Corollary 2.

Corollary 2. Given the threshold τ , for a training data if we
have RD+ ≤ τ and RD− ≥ −τ , then any classifier learned from this
dataset is fair in terms of risk difference.

Given a dataset, we can always build two classifiers fmax and

fmin , then compute RD+ and RD−. If Corollary 2 is satisfied, users

can safely apply any classification models to build classifiers with-

out any fairness concern.

3.2 Convex Fairness-aware Classification
When the constraint-free criterion is not satisfied, it is required to

incorporate fairness constraints when learning classifiers, e.g., solv-

ing Problem Formulation 1. To this end, we adopt two different

surrogate functions for converting the original problem into a con-

vex optimization. We firstly adopt a real-value predictive function

h and let f = sign(h), then rewrite the risk difference as

RD(f ) = RD(h)

= EX |S=s+
[
1
[
sign

(
h(x)

)
= 1

] ]
− EX |S=s−

[
1
[
sign

(
h(x)

)
= 1

] ]
= EX |S=s+ [1h(x)>0] + EX |S=s− [1h(x)<0] − 1.

It follows that

RD(f ) = EX

[
P(S = s+ |x)
P(S = s+)

1h(x)>0+
P(S = s− |x)
P(S = s−)

1h(x)<0−1

]
(5)

= EX

[
η(x)
p

1h(x)>0 +
1 − η(x)
1 − p

1h(x)<0 − 1

]
,

where we denote P(S = s+ |x) by η(x) and P(S = s+) by p for

simplicity, thus P(S = s− |x) = 1 − η(x) and P(S = s−) = 1 − p.
It is intuitive that the indicator function in above formula can

be replaced with the surrogate function. The challenge here is, two

constraints RD(f ) ≤ τ and −RD(f ) ≤ τ are opposite to each other.

Thus, replacing all indicator functions with a single surrogate func-

tion will result in a convex-concave problem, where only heuristic

solutions for finding the local optima are known to exist. There-

fore, we adopt two surrogate functions, a convex one κ(·) and a

concave one δ (·), each of which replaces the indicator function for

one constraint. As a result, the formulated constrained optimization

problem is convex and can be efficiently solved. We call the risk

difference represented by κ(·) and δ (·) as the κ, δ -risk difference,

denoted by RDκ (h) and RDδ (h). Almost all commonly-used surro-

gate functions can be adopted for κ(·) and δ (·), by performing some

shift or flip. Curves of some examples for κ(·) and δ (·) are shown
in Figure 2.

As a result, we obtain the following convex optimization formu-

lation for learning fair classifiers.

Problem Formulation 2. The fairness-aware classification is
converted into a convex optimization problem. The optimal solution



Figure 2: Curves of examples for κ(·) and δ (·).

h∗ can be obtained by solving

min

h∈H
Lϕ (h)

subject to RDκ (h) ≤ c1, −RDδ (h) ≤ c2,

where κ(·) is a convex surrogate function, δ (·) is a concave surrogate
function, c1, c2 are the thresholds of the κ, δ -risk difference, and

Lϕ (h) = EX
[
Pr (Y = 1|x)ϕ

(
h(x)

)
+
(
1 − Pr (Y = 1|x)

)
ϕ
(
− h(x)

) ]
,

RDκ (h) = EX
[η(x)

p
κ
(
h(x)

)
+
1 − η(x)
1 − p

κ
(
− h(x)

)
− 1

]
,

RDδ (h) = EX
[η(x)

p
δ
(
h(x)

)
+
1 − η(x)
1 − p

δ
(
− h(x)

)
− 1

]
.

After obtaining h∗, we build the fair classifier by letting f ∗ =
sign(h∗) and f ∗ is the final fair classifier. We emphasize that in

Problem Formulation 2, the constraint thresholds are rewritten as

c1 and c2 due to the difference between the surrogated constraints

and the original non-convex constraints.

3.3 Refined Fairness-aware Classification
In this section, we develop the upper and lower bounds of the risk

difference RD(h) with the κ, δ -risk difference RDκ (h) and RDκ (h).
Based on the bounds, we present the method to derive c1, c2 for
RDκ (h),RDδ (h), which provides a fairness guarantee that the so-

lution f ∗ = sign(h∗) to Problem Formulation 2 satisfies the fair-

ness requirements, e.g., −τ ≤ RD(f ∗) ≤ τ . The method works for

various types of surrogate functions (e.g., hinge, square, logistic,

exponential, etc.).

We begin with defining the conditional risk difference Cη
(
h(x)

)
for a specific subpopulation x:

Cη
(
h(x)

)
=
η(x)
p

1h(x)>0 +
1 − η(x)
1 − p

1h(x)<0 − 1,

where η is the abbreviation of η(x).
Then, according to Eq. (5), we have RD(f ) = EX[C

η (h(x))].
When surrogate function κ(·) (resp. δ (·)) is adopted, we similarly

define the conditional κ-risk difference

C
η
κ
(
h(x)

)
=
η(x)
p

κ
(
h(x)

)
+
1 − η(x)
1 − p

κ
(
− h(x)

)
− 1,

and we have RDκ (h) = EX
[
C
η
κ
(
h(x)

) ]
.

Note that the values of Cη
(
h(x)

)
and C

η
κ
(
h(x)

)
depend on η(x)

and h(x), which are determined by the subpopulation of the data

specified by x, as well as predictive function h. In order to study the

general situations for any specific subpopulation and any possible

predictive function, we denote h(x) as α and define the generic

conditional risk differenceCη (α) and the generic conditional κ-risk
difference C

η
κ (α):

Cη (α) =
η

p
1α>0+

1 − η

1 − p
1α<0−1, C

η
κ (α) =

η

p
κ(α)+

1 − η

1 − p
κ(−α)−1,

for any η ∈ [0, 1] and α ∈ R. Then, the minimal conditional risk

difference H−(η) and the minimal conditional κ-risk difference

H−
κ (η) for any arbitrary subpopulation and any possible predictive

function are given by

H−(η) = min

α ∈R
Cη (α) = min

α ∈R

[η
p
1α>0 +

1 − η

1 − p
1α<0 − 1

]
,

H−
κ (η) = min

α ∈R
C
η
κ (α) = min

α ∈R

[η
p
κ(α) +

1 − η

1 − p
κ(−α) − 1

]
. (6)

It is straightforward that the minimal risk difference RD− is equiva-

lent to the expectation ofH−(η(x)) since for any possible x,H−(η(x))
provides the minimal conditional risk difference. Similarly, the min-

imal κ-risk difference achieved by any predictive function (denoted

by RD−κ ) is the expectation of H−
κ (η(x)), as given by

RD−κ = EX
[
H−
κ (η(x))

]
.

Finally, we define the minimal conditional κ-risk difference within

interval α s.t. α(η − p) ≥ 0:

H◦
κ (η) = min

α :α (η−p)≥0
C
η
κ (α). (7)

We similarly define H+(η) the maximal conditional risk differ-

ence, H+δ (η) the maximal conditional δ -risk difference, RD+δ the

maximal δ -risk difference, as well asH◦
δ (η) the minimal conditional

δ -risk difference within interval α s.t. α(η − p) ≥ 0.

Now, we are able to present our results, which are given in

Theorem 3 and Corollary 4. The proof can be found in the appendix.

Theorem 3. Ifκ(·) is convex and differentiable at zero withκ ′(0) >
0, δ (·) is concave and differentiable at zero with δ ′(0) > 0, then for
any predictive function h, we have

ψκ (RD(h) − RD
−) ≤ RDκ (h) − RD

−
κ , (8)

ψδ (RD
+ − RD(h)) ≤ RD+δ − RDδ (h),

where

ψκ (µ) = H◦
κ
(
p(1 − p)µ + p) − H−

κ
(
p(1 − p)µ + p

)
,

ψδ (µ) = H+δ
(
p(1 − p)µ + p

)
− H◦

δ
(
p(1 − p)µ + p).

In Theorem 3,ψκ (µ) andψδ (µ) are directly derived from the sur-

rogate function κ and δ . Some commonly-used surrogate functions

κ, δ and their correspondingψκ ,ψδ functions are listed in Table 1.

The inequalities in Theorem 3 bound the difference between RD(h)
andRD+,RD− by the differencesRDκ (h)−RD

−
κ andRD+δ −RDδ (h).

Since RD−,RD+,RD−κ ,RD
+
δ can be computed from the dataset, we

connect the original non-convex constraints and the surrogated

convex constraints.

We reformulate Theorem 3 and explicitly give the upper and

lower bounds of RD(h) in Corollary 4.



Corollary 4. For any predictive function h, let classifier f =
sign(h), if κ(·) is convex and differentiable at zero with κ ′(0) > 0,
δ (·) is concave and differentiable at zero with δ ′(0) > 0, then risk
difference RD(f ) is bounded by following inequalities:

RD(f ) ≤ RD− +ψκ
−1

(
RDκ (h) − RD

−
κ
)
,

RD(f ) ≥ RD+ −ψδ
−1

(
RD+δ − RDδ (h)

)
.

Based on the upper and lower bounds of RD(f ), we can derive

the thresholds c1, c2 for the surrogated constraints in Problem For-

mulation 2. For example, if we aim to obtain a classifier f such that

−τ ≤ RD(f ) ≤ τ , we only require the upper bound of RD(f ) is
smaller than τ and the lower bound is larger than −τ . That is:

RD− +ψκ
−1

(
RDκ (h) − RD

−
κ
)
≤ τ ,

RD+ −ψδ
−1

(
RD+δ − RDδ (h) ≥ −τ .

Thus, we obtain the refined constraints and if the refined constraints

are satisfied, the original risk difference requirements are guaran-

teed to be satisfied.

We modify Problem Formulation 2 to obtain Problem Formula-

tion 3 with refined fairness constraints which guarantee the real

non-convex fairness requirement.

Problem Formulation 3. A classifier f ∗ = sign(h∗) that achieves
fairness guarantee −τ ≤ RD(f ) ≤ τ can be obtained by solving the
following constrained optimization

min

h∈H
Lϕ (h) (9)

subject to RDκ (h) ≤ ψκ (τ − RD
−) + RD−κ ,

− RDδ (h) ≤ ψδ (−τ + RD
+) + RD+δ .

Note that the right-hand sides of above two inequalities are con-

stants for a given dataset. Therefore, the constrained optimization

problem is still convex. We can optimally solve this problem and the

solution f ∗ = siдn(h∗) is guaranteed to satisfy −τ ≤ RD(f ∗) ≤ τ .

Table 1: Some common surrogate functions for κ-δ and the
corresponding ψκ (µ) and ψδ (µ).
Name of κ-δ κ(α ) for α ∈

R
δ (α ) for α ∈

R
ψκ (µ) or ψδ (µ) for µ ∈

(0, 1/p]
Hinge max{α +1, 0} min{α , 1} µ
Square (α + 1)2 1 − (1 − α )2 µ2

Exponential exp(α ) 1 − exp(−α ) (
√
(1 − p)µ + 1−

√
1 − pµ)2

4 EXPERIMENTS
4.1 Experimental Setup
Dataset. In the experiments we use two datasets: Adult and Dutch.

The Adult dataset [9] contains a total of 48,842 instances, each of

which is characterized by 14 attributes (e.g.,sex,age,work_class,
education, income, etc.). We consider sex as the sensitive at-

tribute with two values, male and female. Then, we consider
income as the class label. The Dutch dataset [24] contains a total

of 60,420 instances, each of which is characterized by 12 attributes.

Similarly, we use sex as the sensitive attribute, and occupation
as the class label.

Table 2: RD+, RD− and risk differences of Linear Regression (LR),
Support Vector Machine (SVM), Decision Tree (DT), and Naive
Bayes (NB).

RD(·) Adult Dutch Adult*

RD+ 0.967 0.516 0.046

RD− -0.967 -0.516 -0.046

LR 0.371 0.185 0.000

SVM 0.434 0.156 0.001

DT 0.316 0.184 0.001

NB 0.447 0.144 0.001

Baseline.We compare our method with two related works, re-

ferred to as Zafar-1 [19] and Zafar-2 [18], both of which formu-

late the fairness-aware classification problem as constrained opti-

mization problems. In [19], the authors quantify fairness using the

covariance between the users’ sensitive attribute and the signed

distance from the feature vectors to the decision boundary. The

fairness constraint is formulated as covariance ≤ m × c∗, where c∗

is the measured fairness of the unconstrained optimal classifier and

m is a multiplication factor ∈ [0, 1]. In [18], the fairness is quan-

tified similarly with the distance function being replaced with a

convex non-linear function. As a result, the obtained problem is

a convex-concave optimization problem. In the experiments, we

adopt the Disciplined Convex-Concave Programming (DCCP) [16]

as proposed in [18] for solving the convex-concave optimization

problem. For our method and Zafar-1, the convex optimization prob-

lem is solved using CVXPY [3]. The datasets and implementation

are available at http://tiny.cc/fair-classification.

4.2 Constraint-free Criterion of Ensuring
Fairness

To demonstrate the sufficiency criterion of learning fair classifiers,

we build the maximal/minimal risk difference classifiers fmin, fmax

for both Adult and Dutch datasets, and measure the risk differences

they produce, i.e., RD− and RD+. The results are shown in the

first two rows in Table 2. As can be seen, in both datasets we have

large maximal and minimal risk differences. In order to evaluate

a situation with small a risk difference, we also create a variant

of Adult, referred to as Adult*, where all attributes are binarized

and the sensitive attribute sex is shuffled to incur a small risk

difference. Then, we build a number of classifiers including Linear

Regression (LR), Support Vector Machine (SVM) with linear kernel,

Decision Tree (DT), and Naive Bayes (NB), using the three datasets

as the training data with with 5-fold cross-validation. After that,

their risk differences are quantified on the testing data, as shown in

the last four rows in Table 2. We can see that all values are within

RD−,RD+ which are consistent with our constraint-free criterion.

4.3 Learning Fair Classifiers
We build our fair classifiers on both Adult and Dutch datasets by

solving the optimization problem defined in Problem Formulation 2.

For surrogate functions, we use the logistic function for ϕ(·), and
the hinge function for κ(·) and δ (·). We also compare our methods

with Zafar-1 and Zafar-2. The results are shown in Figure 3, which

depict the relationship between the obtained risk difference and em-

pirical loss. For our method, different risk differences are obtained

http://tiny.cc/fair-classification


(a) Adult (b) Dutch
Figure 3: Comparison of fair classifiers.

by adjusting relax terms c1 and c2, while for Zafar-1 and Zafar-2 dif-
ferent risk differences are obtained by adjusting the multiplication

factorm. As can be seen, our method can achieve much smaller risk

difference than Zafar-1 and Zafar-2. This may be because Zafar-1

linear functions to formulate the fairness constraints, which may

incur large estimation errors; while Zafar-2 formulates a convex-

concave optimization problem, where only the local optima can

be reached. For the same reason, we can observe that our method

produces better empirical loss than Zafar-2 given any same risk

difference.

5 CONCLUSIONS
In this paper, we studied the fairness-aware classification problem

and formulated it as the constrained optimization problem. We

proposed a general framework which addresses all limitations of

previous works in terms of: (1) various fairness metrics can be

incorporated into classic classification models as constraints; (2)

the formulated constrained optimization problem is convex and

can be solved efficiently; and (3) the lower and upper bounds of

real fairness measures are established using surrogate functions,

which provide a fairness guarantee for our framework. Within the

framework, we proposed a constraint-free criterion under which

the learned classifier is guaranteed to be fair in terms of the specified

fairness metric, as well as developed the method for learning fair

classifiers if the constraint-free criterion fails to satisfy. The results

demonstrate the correctness of the constraint-free criterion and the

superiority of our method over existing ones in terms of achieving

fairness and retaining prediction accuracy.
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A OTHER FAIRNESS NOTIONS
Risk ratio is a common fairness notion [12, 15]. It also requires

the decision is independent with the protected attribute. Different

with the risk difference, the unfairness is quantified by the ratio of

the positive decisions between the non-protected group and the

protected group. Let’s formalize the risk ratio RR(h) of classifier h:

RR(h) =
EX |S=s+

[
1h(x)>0

]
EX |S=s−

[
1h(x)>0

] .
The fairness constraints with regards to risk ratio could be ex-

pressed as

RR(h) =
EX |S=s+

[
1h(x)>0

]
EX |S=s−

[
1h(x)>0

] ≤ τ .

Similar to Eq. (5), we express the constraints as

EX

[η
p
1h(x)>0 + τ

1 − η(x)
1 − p

1h(x)>0

]
− τ ≤ 0. (10)

Equalized odds and equalized opportunity are proposed by

Hardt et al. [6]. Equalized odds requires the protected attribute and

the predicted label are independent conditional on the truth label.

To quantify the strength of equalized odds, we simply propose the

prediction difference between two groups conditional on the truth

label. So, the equalized odds is

EO(h) = EX |S=s+,Y [1h(x)>0] − EX |S=s−,Y [1h(x)>0].

Similarly, a classifier h is considered as fair with regard to equalized

odds if EO(h) ≤ τ .
Let’s reformulate the equalized odds constraints:

EO(h) = EX |S=s+,Y [1h(x)>0] + EX |S=s−,Y [1h(x)<0] − 1

= EX |Y

[P(S = s+ |x,y)
P(S = s+ |y)

1h(x)>0 +
1 − P(S = s+ |x,y)
1 − P(S = s+ |y)

1h(x)<0

]
− 1 ≤ τ .

(11)

Equalized opportunity is a relaxation of equalized odds where

only the positive group ( Y = 1 ) is taken into account:

EOP(h) = EX |Y=1

[P(S = s+ |x,Y = 1)

P(S = s+ |Y = 1)
1h(x)>0

+
1 − P(S = s+ |x,Y = 1)

1 − P(S = s+ |Y = 1)
1h(x)<0

]
− 1 ≤ τ . (12)

By simply replacing the indicator functions with surrogate func-

tions, we can readily extend our framework to the constraints (10),

(11), (12) with regard to the three notions. Our criterion and bounds

are also extensible to the three notions.



B PROOF OF THEOREM 1
Proof. Following Eq. (3), the risk difference of the maximum

risk difference classifier fmax is given by:

RD(fmax) = EX

[η(x)
p

1fmax(X)=1 +
1 − η(x)
1 − p

1fmax(X)=−1

]
− 1.

The difference between RD(fmax) and any deterministic classi-

fier RD(f ) is given as:

RD(fmax) − RD(f ) = EX

[η(x)
p

[
1fmax(X)=1 − 1f (x)=1

]
+
1 − η(x)
1 − p

[
1fmax(X)=−1 − 1f (x)=−1

] ]
.

Let’s consider the difference of the conditional risk difference:

DC(x) =
η(x)
p

[
1fmax(X)=1 − 1f (x)=1

]
+
1 − η(x)
1 − p

[
1fmax(X)=−1 − 1f (x)=−1

]
,

(1) if η(x) ≥ p,
• if f (x) = 1, DC(x) = 0;

• if f (x) = −1, DC(x) = η(x)
p −

1−η(x)
1−p ∝ η(x) − p ≥ 0;

(2) if η(x) < p, fmax(x) = −1,

• if f (x) = 1, DC(x) = −
η(x)
p +

1−η(x)
1−p ∝ −η(x) + p > 0;

• if f (x) = −1, DC(x) = 0.

We can find the difference of the conditional risk difference

DC(x) is always non-negative. Thus, the difference RD(fmax) −

RD(f ), the weighted average of DC(x), is also non-negative. So

RD(fmax) ≥ RD(f ) is proved. Similarlywe can prove thatRD(fmin) ≤

RD(f ). □

C PROOF OF THEOREM 3
Proof. Let’s firstly verify thatψκ is convex.

Because κ is convex and κ ′(0) > 0, we have

H◦
κ (η) = min

α :α (η−p)≥0

η

p
κ(α) +

1 − η

1 − p
κ(−α)

= min

α :α (η−p)≥0

(η
p
+
1 − η

1 − p

) [ η
p

η
p +

1−η
1−p

κ(α) +

1−η
1−p

η
p +

1−η
1−p

κ(−α)
]
.

Let ν =
η
p +

1−η
1−p , the above can be reformulated as

H◦
κ (η) = min

α :α (η−p)≥0
ν ×

[ η
pν
κ(α) +

1 − η

(1 − p)ν
κ(−α)

]
.

Since κ is convex and according to Jensen’s inequality, we can

derive

H◦
ϕ (η) ≥ min

α :α (η−p)≥0
ν × κ

( η
pν
α −

1 − η

(1 − p)ν
α)
)

= min

α :α (η−p)≥0
ν × κ

( α(η − p)

ν ∗ p(1 − p)

)
≥ νκ(0).

The equality is achieved when α(η − p) = 0, so that

H◦
κ (η) =

(η
p
+
1 − η

1 − p

)
κ(0).

So it follows that

H◦
κ
(
p(1 − p)µ + p

)
= (µ − 2pµ + 2)κ(0).

Since H◦
ϕ and H−

ϕ are convex (H−
κ is a point-wise minimum over

linear functions and H◦
κ is a linear function of µ), we conclude that

ψκ (µ) = H◦
κ (p(1 − p)µ + p) − H−

κ (p(1 − p)µ + p) is convex.
Let’s move back to Eq. (8) whose argument could be rewrite as

RD(h) − RD− = Ex
[
Cη (h, x)

]
− min

h∈H
Ex

[
Cη (h, x)

]
= Ex

[
Cη (h, x) − min

h∈H
Cη (h, x)

]
= Ex

[
1(η−p)h(x)<0 ×

[ ��η − p
��

p(1 − p)

] ]
= Ex

[
д(x)

]
.

By Jensen’s inequality, ifψκ is convex, then we have

ψκ
(
RD(h) − RD−

)
= ψκ

(
Ex

[
д(x)

] )
≤ Ex

[
ψκ

(
д(x)

) ]
≤ Ex

[
ψκ

(
1(η−p)h(x)>0

[ ��η − p
��

p(1 − p)

] )]
= Ex

[
1(η−p)h(x)>0 ×ψκ

( ��η − p
��

p(1 − p)

) ]
= Ex

[
1(η−p)h(x)>0 ×

[
H◦
κ (η) − H−

κ (η)
] ]

= 1(η−p)h(x)>0 × Ex
[
H◦
κ (η) − H−

κ (η)
]
.

Note that if (η−p)h(x) ≥ 0, we always haveC
η
κ
(
h(x)

)
≥ H◦

κ (η) be-

cause of the definition ofH◦
κ . Otherwise, we always haveC

η
κ
(
h(x)

)
≥

H−
κ (η) because of the definition of H−

ϕ . Thus,

ψκ
(
RD(h) − RD−

)
≤ 1(η−p)h(x)>0Ex

[
H◦
κ (η) − H−

κ (η)
]
+ 1(η−p)h(x)≤0 × 0

≤ 1(η−p)h(x)>0Ex

[
C
η
κ
(
h(x)

)
− H−

κ
(
η
) ]
+ 1(η−p)h(x)≤0Ex

[
C
η
κ
(
h(x)

)
− H−

κ
(
η
) ]

= Ex

[
C
η
κ
(
h(x)

)
− H−

κ
(
η
) ]

= RDκ (h) − RD
−
κ .

Similarly, we can prove ψδ
(
RD+ − RD(h)

)
≤ RD+δ − RDδ (h).

Thus, Theorem 3 is proved. □
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