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Abstract—Discrimination discovery and prevention has re-
ceived intensive attention recently. Discrimination generally
refers to an unjustified distinction of individuals based on their
membership, or perceived membership, in a certain group,
and often occurs when the group is treated less favorably than
others. However, existing discrimination discovery and preven-
tion approaches are often limited to examining the relationship
between one decision attribute and one protected attribute and
do not sufficiently incorporate the effects due to other non-
protected attributes. In this paper we develop a single unifying
framework that aims to capture and measure discriminations
between multiple decision attributes and protected attributes
in addition to a set of non-protected attributes. Our approach
is based on loglinear modeling. The coefficient values of the
fitted loglinear model provide quantitative evidence of dis-
crimination in decision making. The conditional independence
graph derived from the fitted graphical loglinear model can
be effectively used to capture the existence of discrimination
patterns based on Markov properties. We further develop an
algorithm to remove discrimination. The idea is modifying
those significant coefficients from the fitted loglinear model and
using the modified model to generate new data. Our empirical
evaluation results show effectiveness of our proposed approach.

Keywords-discrimination discovery; discrimination preven-
tion; loglinear modeling;

I. INTRODUCTION

Discrimination discovery and prevention has been an ac-
tive research area recently [1]–[4]. Discrimination discovery
is the data mining problem of unveiling discriminatory
practices by analyzing a dataset of historical decision records
and discrimination prevention aims to remove discrimination
by modifying the biased data before conducting predictive
analysis. Discrimination generally refers to an unjustified
distinction of individuals based on their membership, or
perceived membership, in a certain group, and often oc-
curs when the group is treated less favorably than others.
Laws and regulations (e.g., the Fair Credit Reporting Act
or Equal Credit Opportunity Act) disallow discrimination
on several grounds, such as gender, age, marital status,
sexual orientation, race, religion or belief, membership in a
national minority, disability or illness, denoted as protected
attributes. Various business models have been built around
the collection and use of individual data including the
above protected attributes to make important decisions like
employment, credit, and insurance.

The state of the art of discrimination discovery [3], [4]

has developed different approaches for discovering differ-
ent types of discrimination including group discrimination,
individual discrimination, direct and indirect discrimination,
and conditional discrimination. Proposed methods for dis-
crimination prevention [2], [5]–[7] are either based on data
preprocessing or algorithm tweaking. Preventing discrimi-
nation when training a classifier consists of balancing two
contrasting objectives: maximizing accuracy of the extracted
classification model and minimizing the number of pre-
dictions that are discriminatory. However, those methods
are often limited to examining the relationship between
one decision attribute and one protected attribute without
considering other attributes included in the historical dataset.
Hence it is imperative to develop approaches that can cap-
ture, measure and remove discriminations between multiple
decision attributes and protected attributes given a set of
non-protected attributes.

A. Summary of Our Contribution

We develop a single unifying framework that aims to
capture and measure discriminations based on the use of
loglinear modeling. Loglinear modeling is the statistical
method to model categorical variables and their multi-way
relationships through a set of estimation and modeling
strategies. The fitted loglinear model represents the intrinsic
interaction effects via statistical dependencies. For low di-
mensional data we simply build a loglinear model, examine
its coefficient values, use a derived metric to effectively
quantify the magnitude of the discriminations. For high
dimensional data we limit our model fitting to graphical
loglinear models to improve interpretability and reduce the
computational cost of fitting the model. We build from
the fitted graphical loglinear model a graph representing
the conditional independence structures of attributes in the
historic dataset. We show how to determine the existence of
discrimination patterns and interpret them based on Markov
properties. To our best knowledge, this is the first work
to capture and quantify discriminations between multiple
protected attributes and decision attributes given a set of
non-protected attributes.

We solve the problem of discrimination prevention by
modifying those significant coefficients from the fitted log-
linear model and using the modified model to generate
new data. We design strategies of effectively changing the
coefficient values of the fitted model to meet different dis-
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crimination requirements. The proposed approach is shown
to effectively remove discrimination while preserving the
utility.

II. RELATED WORK

A. Anti-discrimination Learning

Anti-discrimination learning either focused on using data
mining to discover and measure discrimination [3] or dealt
with preventing discrimination when building data mining
models [1], [2]. Discrimination can be classified as group
discrimination, individual discrimination, direct and indirect
discrimination, and conditional discrimination [4].

Group discrimination refers to discrimination against a
subgroup described by a combination of multiple protected
and non-protected attributes. It has been studied in [8], [9]
where classification rules are extracted from a dataset of
historical records and then are ranked according to some
measures of discrimination. Rules with high ranks indicate
possible discrimination against groups of protected-by-law.
Individual discrimination requires to measure the amount
of discrimination for a specific individual, i.e., an entire
record in the dataset. The authors [10] exploited the idea
of situation testing to discover individual discrimination.
For each member of the protected group with a negative
decision outcome, testers with similar characteristics are
searched for in a dataset of historical decision records.
When there are significantly different decision outcomes
between the testers of the protected group and the testers
of the unprotected group, the negative decision can be
considered as discrimination. In [11], the authors proposed
to use the causal networks as the guideline of finding the
similar records. The causal structure of the underlying data
and the causal effect of each attribute on the decision are
used to facilitate the similarity measurement. Conditional
discrimination, i.e., part of discrimination which may be
explained by other legally grounded attributes, was studied
in [5], [12]. The task was to evaluate to which extent the
discrimination apparent for a group is explainable on a legal
ground. Indirect discrimination discovery refers to the data
mining task of discovering the attributes values that can act
as a proxy to the protected groups and lead to discriminatory
decisions indirectly [1], [9], [13].

Proposed methods for discrimination prevention are ei-
ther based on data preprocessing or algorithm tweaking.
Data preprocessing methods [2], [5] modify the historic
data to remove discriminatory patterns according to some
discrimination measure before learning a prediction mod-
el. In [5], the authors analyzed the issue of conditional
non-discrimination in classifier design and developed local
techniques, local massaging and preferential sampling, for
handling conditional discrimination, i.e., removing the bad
discrimination when one of the attributes is considered to
be explanatory for the discrimination. Proposed methods
for discrimination prevention using model tweaking include

the tweaking of decision tree [6], naive Bayes classifier
[7], and logistic regression [14]. All the methods require
some tweak of predictive models. For example, in [6], the
authors developed a strategy for relabeling the leaf nodes
of a decision tree to make it discrimination free. Preventing
discrimination when training a classifier consists of balanc-
ing two contrasting objectives: maximizing accuracy of the
extracted classification model and minimizing the number
of predictions that are discriminatory.

The authors in [15] proposed the use of Bayesian networks
to compute the confidence of the classification rules for
discrimination discovery. In [16], the authors proposed the
use of the causal networks to categorize various types of dis-
crimination. The authors in [17] proposed the use of Suppes-
Bayes causal network and developed several random-walk-
based methods over the causal structure to detect different
types of discrimination. However, the Suppes-Bayes causal
network learned from a data set with h categorical attributes
and s samples has m nodes where each node corresponds
to a Bernoulli variable of the type < attribute = value >.
The time complexity of the network construction algorithm
is O(sm) and the space required is O(m2), which is
impractical with the large number of attribute-value pairs.

B. Loglinear Modeling

Loglinear modeling [18] is a discrete multivariate sta-
tistical technique that is designed specifically for analyzing
categorical data and its derived contingency table. It is used
to measure the strength of interactions among categorical
attributes without conceptually distinguishing between a
dependent variable and independent variables. In the data
mining area, Loglinear modeling has been applied to data
compression [19], multi-item associations [20], and data
cube exploration [21].

For a data set with d categorical attributes A1, . . . , Ad,
we use ni1...id to denote the number of records in the cell
i1 . . . id where ir denotes the r-th domain value of attribute
Ar. We define the log of anticipated value mi1...in as a linear
additive function of the coefficients, γ terms, which capture
contributions from various higher level group-bys.

For instance, in a 4-dimensional table with dimensions
A,B,C,D, we use (i, j, k, l, nijkl) to denote the cell in a 4-D
space, where i = 1, · · · , I ,j = 1, · · · , J ,k = 1, · · · ,K ,l =
1, · · · , L. Equation 1 shows the saturated loglinear model
which contains the 4-factor effects, all the possible 3-factor
effects, and so on up to the 1-factor effects and the mean
γ. For example, γA

i is 1-factor effect, γAB
ij is 2-factor effect

which shows the dependency within the distributions of the
associated attributes A,B.

logmijkl = γ + γA
i + γB

j + γC
k + γD

l

+ γAB
ij + γAC

ik + γAD
il + γBC

jk + γBD
jl + γCD

kl

+ γABC
ijk + γABD

ijl + γACD
ikl + γBCD

jkl

+ γABCD
ijkl (1)
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Equation 2 shows the linear constraints among coeffi-
cients, where a dot “.” means that the parameter has been
summed over the index (e.g., γAB

i. =
∑J

j=1 γ
AB
ij ). In short,

the constraints specify that the loglinear parameters sum to
0 over all indices.

γA
. = γB

. = γC
. = γD

. = 0

γAB
i. = γAB

.j = γAC
i. = γAC

.k = · · · = γCD
.l = 0

· · ·
γABCD
ijk. = γABCD

ij.l = γABCD
i.kl = γABCD

.jkl = 0 (2)

The coefficient corresponding to a k-way effect is ob-
tained by subtracting from the average value all the coeffi-
cients from (k− 1)-way effects, (k− 2)-way effects, and so
on up to the 1-way effects and the grand mean. Equation 3
shows how to compute the coefficients in a 4-dimensional
table.

γ =
n....

IJKL

γA
i =

ni...

JKL
− γ

· · ·
γAB
ij =

nij..

KL
− γA

i − γB
j − γ

γABC
ijk =

nijk.

L
− γAB

ij − γAC
ik − γBC

jk − γA
i − γB

j − γC
k − γ

· · ·
(3)

where n.... is the grand sum and ni... is the sum over all
values along i-th member of dimension A. We can see γA

i

denotes how much the average of the values along i-th
member of dimension A differs from the overall average.

It is obvious that a large number of models can be used
to fit a given data set. For an d-dimensional loglinear model,
there are a total 22

d

possible models (determined by which
parameters of the saturated model are set to zero). Various
strategies of model selection have been investigated [22].

Using the fitted Loglinear model, we can obtain not
only the single-factor effects but also two-factor or higher
order-factor effects, which captures multi-way interactions.
Contingency tables are used in categorical data analysis to
analyze expected patterns produced by various combinations
of certain variable levels. The parameters of the loglinear
model provide the interactions between variables. The γA

i

parameter is expressed as a deviation from the grand-sum
parameter γ; it reflects the extent to which membership in
the i-th category of A is different from the average across
all categories of A. A 2-way interaction between A and B
indicates that a partial association exists between them. γAB

ij

term in the model can be expressed as a deviation from
the γA

i term. A 3-way interaction γABC
ijk means that the A-

B relation is not constant but changes for each category
of C. The parameter of γABC

ijk is derived as the difference
between the average value of the A-B relation and the

value exhibited at the k-th level of C. It tells how the A-
B relation is enhanced, depressed, or changed in direction
when compared with the average A-B relation.

It is a common practice for researchers and practitioners
to restrict model selection to a subclass of loglinear models,
e.g., hierarchical models or graphical models. A loglinear
model is hierarchical if the model includes all lower-order
terms composed from variables contained in a higher order
term. Hierarchical models are nested models in which when
an high-factor interaction is present, all interactions of lower
order between the variables of that interaction are also
present. For example, if a 3-way interaction (γABC) is
present, the hierarchical model must also include all 2-way
interaction (γAB, γAC , γBC) as well as the single variable
(γA, γB, γC) and the grand mean (γ).

In graphical loglinear models, the vertices correspond to
variables and an edge between a pair of variables captures
the conditional dependence. For instance, we add the edge
A-B when γAB is contained in the fitted loglinear model.
A probability model is graphical if, for every clique in its
conditional independence graph, all possible dependencies
implied by the clique are present. We can interpret condi-
tional independence relationships based on the well known
Markov properties.

• Pairwise Markov Property: A and B have no edge be-
tween them iff A and B are conditionally independent
given all other variables.

• Global Markov Property: Two sets of variables U and
V are separated by a third set of variables W, if and
only if U ⊥ V|W.

• Local Markov Property: A is conditionally independent
of its non-neighbors in the graph G, given its neighbors
bd(A), i.e., A ⊥ G\{A ∪ bd(A)}|bd(A).

III. DISCRIMINATION DETECTION AND INTERPRETATION

Our approach is to use the loglinear model to fit the
data and examine its coefficients to interpret the interac-
tion effects among decision variable, sensitive attributes,
and other explanatory attributes. Loglinear modeling can
simultaneously test relationships between multiple decision
variables and multiple explanatory variables. In the paper,
we use bold capital letters (e.g., X) to denote a subset of
variables and use the regular calligraphic letters (e.g., X)
to denote a variable of the subset. In the context of anti-
discrimination learning, we assume the historical dataset
contains a subset of protected-by-law attributes X, a subset
of decision attributes Y, and other non-protected attributes
Z. Obviously, X ∈ X denotes a protected attribute and Y ∈
Y denotes an attribute recording one historical decision. We
assume that protected attributes and decision attributes are
explicitly specified as input of the discrimination analysis.
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A. Three Dimension Case

We assume in this subsection there is one protect-
ed attribute X , one decision attribute Y , and one non-
protected attribute Z in the historical dataset. The dataset
can be represented as one 3-way contingency table. We use
(i, j, k, {nijk}) to denote cell in a 3-D space, where nijk

denotes the number of records in cell (i, j, k). The counts
{nijk} follow a multinomial distribution M(n, {πijk})
where πijk denotes the probability of a record in cell
(i, j, k). For simplicity, we write πijk = P (X = i, Y =
j, Z = k), which represents the joint distribution of X,Y, Z .
Let mijk = E(nijk) denote the mean where nijk = nπijk

for the multinomial distribution.
1) Detecting Discrimination Structure: To determine

whether there is a discrimination, we first fit the model and
then examine the coefficients of the fitted model. The fitted
loglinear model represents the intrinsic interaction effects via
statistical dependencies. In our discrimination analysis, our
focus is on the relationship between the protected attribute
X and the decision attribute Y .

Table I shows all possible hierarchical models for a 3-D
dataset. A hierarchical model includes all lower-order terms
composed from variables contained in a higher-order term
and can be abbreviated by giving the terms of higher order.
For example, the symbol (XY,XZ) denotes the model
containing γXY , γXZ , γX , γY , γZ and γ. In Table I, No 1
shows the main effects model, No 2-4 show three models
which contain only one 2-factor interaction, No 5-7 show
three models which contain two 2-factor interactions, No 8
shows the all 2-factor interaction model, and No 9 shows
the saturated model.

We can easily see loglinear models shown in No 1, 3, 4,
and 7 do not contain γXY , which indicates the dataset does
not contain discrimination. The loglinear model shown as No
1 indicates all three variables are mutually independent. The
loglinear model shown in No 3 indicates decision attribute
Y is jointly independent of X and Z although X and Z are
dependent.

We can see γXY term is included in the loglinear models
shown in No 2, 5, 6, 8 and 9. All these models indicate
the existence of discrimination in the underlying data set.
The loglinear model (XY,Z), shown in No 2 and the
loglinear model (XY,XZ) shown in No 5 clearly indicate
the discrimination due to sensitive attribute X and the third
variable Z does not help explain any discrimination. The
difference between No 2 and No 5 is the existence of
conditional dependence between X and Z in No 5. The
loglinear model (XY, Y Z) shown in No 6 indicates both X
and Z have their own association with Y , however X and
Z are conditionally independent given Y .

The loglinear model (XY,XZ, Y Z) shown in No 8
contains all 2-factor interactions and the loglinear model
(XY Z) shown in No 9 contains the 3-factor interaction
in addition to all 2-factor interactions. A 2-way interaction

between X and Y in a model in which X and Y are involved
in no higher order interactions simply means that X and Y
share a relation that is constant across levels of all other
variables in the table. A 3-way interaction involving X , Y
and Z means that the relation between any two of these
variables changes across the levels of the third.

It is worth pointing out that the loglinear model shown in
No 4 indicates the decision attribute Y is dependent on the
non-protected attribute Z but independent with the sensitive
attribute X when Z is considered. In the loglinear model
shown in No 7, the decision attribute Y is conditionally
independent with the protected attribute X given the non-
protected attribute Z . Conditional independence of X and
Y given Z (in short X ⊥ Y |Z) holds if for all i, j, k,
P (X = i, Y = j|Z = k) = P (X = i|Z = k)P (Y =
j|Z = k). However, for both models No 4 and 7, there may
exist strong marginal association between X and Y when Z
is ignored. This corresponds to the well known Simpson’s
paradox phenomenon [23].

2) Quantifying Magnitude of Discrimination: To quantify
the discrimination’s magnitude, we use the coefficient values
captured in the fitted loglinear model. The coefficient values
indicate the strength of the association between variables,
and therefore can be used to quantify the magnitude of
discrimination. Recall the values of γXY show the 2-factor
interaction effects between the protected attribute X (e.g.,
sex) and the decision attribute Y (e.g., admission) for each
combination of two attributes X and Y (e.g., female and
decline). Similarly, the values of γXY Z indicates that more
information about the X-Y relation is provided when levels
of Z are distinguished. If γXYZ

ijk is positive, it means that
the X-Y relation in the (i, j)-th cell of the X-Y subtable
in the k-th level of Z is more positive than the average X-
Y relation over all levels of Z; if it is negative, the X-Y
relation in that cell is more negative than the average. In [24],
the authors showed that full information about the pattern
of the XY Z interaction cannot be given by an inspection
of the highest order parameter alone.

To quantify the interaction between X and Y after incor-
porating the third variable Z , denoted as IXY |Z , we need to
combine the influence of lower order coefficient γXY and
the influence of higher order coefficient γXY Z . To do this,
we add the appropriate 3-way interaction parameter to the
XY parameter to determine the XY relation for each level
of Z:

I
XY |Z
ij|k = γXY

ij + γXY Z
ijk = nijk − ni.k

J
− n.jk

I
+

n..k

IJ
(4)

By comparing the values IXY |Z across different com-
binations of X and Y , we can quantify the magnitude
of difference and conclude whether there exist significant
discriminations. It is worth pointing out that our loglinear
model based discrimination analysis covers the general case
where the protected attribute has multiple domain values
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Table I
LOGLINEAR MODELS FOR THREE-DIMENSIONAL TABLE. DIS: DISCRIMINATION

No Loglinear Model Generators Dis
1 logmijk = γ + γX

i + γY
j + γZ

k (X,Y, Z) N
2 logmijk = γ + γX

i + γY
j + γZ

k + γXY
ij (XY,Z) Y

3 logmijk = γ + γX
i + γY

j + γZ
k + γXZ

ik (XZ, Y ) N
4 logmijk = γ + γX

i + γY
j + γZ

k + γY Z
jk (X,Y Z) N

5 logmijk = γ + γX
i + γY

j + γZ
k + γXY

ij + γXZ
ik (XY,XZ) Y

6 logmijk = γ + γX
i + γY

j + γZ
k + γXY

ij + γY Z
jk (XY, Y Z) Y

7 logmijk = γ + γX
i + γY

j + γZ
k + γXZ

ik + γY Z
jk (XZ, Y Z) N

8 logmijk = γ + γX
i + γY

j + γZ
k + γXY

ij + γXZ
ik + γY Z

jk (XY,XZ, Y Z) Y
9 logmijk = γ + γX

i + γY
j + γZ

k + γXY
ij + γXZ

ik + γY Z
jk + γXYZ

ijk (XY Z) Y

(e.g., race has domain values of black, white, and asian) and
the decision attribute also has multiple domain values (e.g.,
decision has domain values accept, reject, and waiting-list).
In previous work of discrimination analysis, researchers only
consider the binary case for both the decision attribute and
the protected attribute. There are two widely used metrics
to measure discrimination: risk difference (RD) is defined
as P (Y = +|X = p) − P (Y = +|X = n), and risk ratio
(RR) is defined as P (Y = +|X = p)/P (Y = +|X = n)
where + denotes favorable decision and p denotes the
protected group. When the difference is smaller than some
threshold θ, discrimination does not occur. The value of
threshold used for discrimination depends on the law. For
instance, the 1975 British legislation for sex discrimination
sets θ = 0.05, namely a 5% difference. The U.S. legislation
for employment discrimination sets the risk ratio threshold
as 1.25 (known as the four-fifths rule). In statistics, Odds
Ratio (OR), P (Y=+|X=p)(1−P (Y=+|X=n))

P (Y=+|X=n)(1−P (Y=+|X=p)) , can also be used
to quantify the discrimination.

Result 1: For the I × J ×K table with 3 dimensions X ,
Y and Z , given a fixed domain value k of Z , for any two
values of the protected attribute X , i and i′, and any two
values of the decision attribute Y , j and j′, we have

logOR = I
XY |Z
ij|k + I

XY |Z
i′j′|k − I

XY |Z
i′j|k − I

XY |Z
ij′ |k . (5)

Specially, when the decision attribute only has two domain
values, we have

logOR = 2I
XY |Z
ij|k − 2I

XY |Z
i′j|k . (6)

When both the decision attribute and the protected attribute
have two domain values, we have

logOR = 4I
XY |Z
ij|k . (7)

We skip all proofs due to space limits.

B. High Dimensional Data

One advantage of loglinear modeling is to be able to cap-
ture the high-order interactions for any number of protected
attributes and decision attributes in one fitted model. Our
goal is to derive a fitted model such that it is complex enough

to provide a good fit to the data and is simple to capture
all significant effects without overfitting the data. For high
dimensional data, as the number of possible interaction terms
increases, the loglinear model fitting can be computationally
prohibitive and the interpretation of multi-factor interactions
can be tedious.

1) Detecting Discrimination Structure: When there are
multiple protected attributes X and decision attributes Y
in addition to non-protected attributes Z, discrimination
analysis is becoming challenging. Our idea is to use the
graphical model and interpret the conditional independence
relationships between subsets of X and Y given subsets of
Z based one graphical structure.

We restrict model selection to hierarchical models in the
screening process. Specifically, we adopt the classic fitting
approach that consists of fitting the model having only
single-factor terms, then the model having only single-factor
and 2-factor terms, then the model having only 3-factor and
lower order terms, and so forth. We then choose one from the
above all k-way interaction models which best fit the data.
We apply the strategy proposed by Goodman et al [25],
i.e., screening out those insignificant γ terms from the fitted
model by using the χ2 and the degree of freedom to compare
the models. In essence, the χ2 test statistic reflects how well
a variable improves the model’s goodness-of-fit beyond the
fit produced by a baseline model without this variable.

We then find the smallest graphical model containing
the fitted hierarchical model. This is a common practice
to interpret loglinear models in terms of conditional in-
dependence. Since the fitted model is a submodel of that
graphical model, all the conditional independence structure
of the graphical model also holds for the fitted model.
We are interested in the relationship between the protected
attributes X and the decision attributes Y conditioning on
non-protected attributes Z.

Result 2: From the conditional independence graph con-
structed from the graphical loglinear model, we have:

1) there is no discrimination between the protected at-
tribute X and the decision attribute Y if there is no
edge between them.
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2) for U ⊆ X, V ⊆ Y, and W ⊆ Z, if U and V are
separated by W, there is no discrimination between
U and V.

3) there is no discrimination between the decision at-
tribute Y and sensitive attributes X according to the
local Markov property if its neighbors bd(Y ) ⊆ Z.

It is worth pointing out that the graphical loglinear model-
ing can be easily used to detect the occurrence of Simpson’s
paradox like phenomena. Simpson’s paradox happens when
P (Y|X,Z) �= P (Y|X). The non-occurrence of Simpson’s
paradox like phenomena is related to collapsibility. We say
that the conditional relationship Y|X is collapsible over Z
if P (Y|X,Z) = P (Y|X). When the model is a graphical
model, the global Markov property tells us the collapsibility
can happen iff Z separates the graph into disjoint subgraph
containing X and Y. In other words, this can happen iff
every path from a variable in X to a variable in Y goes
through at least one variable in Z.

The conditional independence graph can also be used to
interpret marginal independence under some circumstances.
Marginal independence occurs if there is no chain in the
graph that connects two groups of variables. In general asso-
ciation in marginal tables differs from association structures
found in the full table. For example, X and Y can be
conditionally independent given Z = k, even if variables
X and Y are marginally dependent. Marginal dependence
means that the association is considered in the marginal table
obtained from collapsing over the categories of the other
variables, i.e., the other variables are ignored.

2) Quantifying Magnitude of Discrimination: In many
cases, the best fitted model contains higher order interactions
involving several variables. Simply put, a higher order
interaction means that the nature of the association between
two variables depends on the values (levels) of one or more
other variables. Recall in the 3-D context, we are interested
in the X-Y relationship and its changes over levels of Z .
Our definition and procedure shown in Equation 4 readily
generalizes to the d-th order interactions. The coefficients of
an d-way interaction are made up of the contrast between the
average value of an (d−1)-way interaction over all levels of
the remaining d-th variable and the value of that (d−1)-way
interaction exhibited at a particular level of the d-th variable.
For example, in a 4-way interaction involving A, B, C, and
D, as shown in Equation 1,

When we investigate a 2-way interaction, γAB|CD
ij|kl , across

combinations of levels of C and D (i.e., A is the protected
attribute, B is the decision attribute, and both C and D are
non-protected attributes), our procedure involves adding the
appropriate 3-way and 4-way parameter terms to the γAB

ij

parameter:

I
AB|CD
ij|kl = γAB

ij + γABC
ijk + γABD

ijl + γABCD
ijkl

= nijkl − ni.kl

J
− n.jkl

I
+

n..kl

IJ
(8)

When we aim to determine the pattern of change for the
3-way interaction, γABC

ijk , across levels of D (e.g., both A
and C are protected attributes, B is the decision attribute,
and D is the non-protected attribute), we can add the 4-way
term, γABCD

ijkl , to the 3-way term, γABC
ijk . The relationship

between the interaction and odds ratio shown in Result 1
can also be readily extended to high dimensional cases, i.e.,
replacing Z with Z and k with k where Z denotes the subset
of non-protected attributes and k denotes the corresponding
indices of Z.

IV. DISCRIMINATION PREVENTION

Previous works of discrimination prevention tried to ad-
dress this challenging problem by introducing a reverse
discrimination in the training data [26] or pushing con-
straints into the trained classifiers [7], [8]. These works
only consider the association or correlation between one
protected attribute X and the decision attribute Y and do not
take into account any effects due to non-protected attributes.
Our discrimination discovery based on loglinear modeling
can deal with any number of protected and decision at-
tributes. The conditional independence graph derived from
the fitted graphical loglinear model can effectively capture
the existence or non-existence of discrimination patterns
based on Result 2. Moreover, the coefficient values of
the fitted loglinear model provide quantitative evidence of
discrimination in decision making.

One naive approach is to remove all the coefficients that
contain both a sensitive attribute and a decision attribute
(e.g., γXY Z , γXY ) from the fitted model. The newly gener-
ated dataset is guaranteed to have no discrimination between
protected attributes and decision attributes. This strategy
achieves the acceptance probabilities to be equal across
different groups.

In practice, rather than removing those significant coeffi-
cients completely, we can modify the coefficient values such
that the odds ratio values for all X ∈ X and Y ∈ Y are
below a given threshold θ. Recall in Result 1, the odds ratio
is determined by interaction parameters I

XY |Z
ij|k that can be

further calculated using coefficients (γ terms) of the fitted
loglinear model. Hence our algorithm is to modify those
interaction parameters I

XY |Z
ij|k such that the odds ratio of

every possible combination of X and Y is below the given
threshold θ (Lines 4-9 of Algorithm 1). This procedure is
equivalent to modifying the corresponding coefficients (γ
terms) of the fitted loglinear model, as shown in Equation
4. The number of records in the corresponding cells are
then modified as shown in Line 11 and a new table is
returned. In our empirical evaluation, we will examine how
the discrimination (in terms of risk difference and risk ratio)
and the utility loss (in terms of the χ2) vary with different
θ values.
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Algorithm 1 Removing Discrimination

Input: contingency table T = (i1, · · · , id, ni1,··· ,id); at-
tributes A1, · · · , Ad as well as their assignments X, Y, and
Z; threshold θ
Output: new table T̂

1: Build loglinear model from contingency table T ;
2: for each pair of X ∈ X and Y ∈ Y do
3: Calculate I

XY |Z
ij|k over all i ∈ [1, I] and j ∈ [1, J ];

4: Calculate δ = maxi,i′∈[1,I]j,j′∈[1,J]{IXY |Z
ij|k +I

XY |Z
i′j′|k

−IXY |Z
i′j|k − I

XY |Z
ij′|k }

5: if δ > θ then
6: Î

XY |Z
ijk ← θ

δ I
XY |Z
ijk for all i ∈ [1, I] j ∈ [1, J ] ;

7: else
8: Î

XY |Z
ijk ← I

XY |Z
ijk ;

9: end if
10: for each cell ni1···id do

11: n̂i1···id ← eÎ
XY |Z
ijk −I

XY |Z
ijk × ni1···id ;

12: end for
13: end for
14: return new table T̂ = (i1, · · · , id, n̂i1···id);

V. EVALUATION

A. Dataset

We use two real datasets, Adult and Dutch Census, from
the UCI Repository of Machine Learning Databases. These
two datasets are typically used in discrimination analysis
literature. The Adult dataset consists of 30169 tuples (after
removing those tuples with missing values) with 14 at-
tributes. The predictive task is to classify individuals into
high and low income classes. It is well known that a
number of attributes in the Adult dataset are weakly related
with gender such as workclass, education, occupation, race,
capital loss, native country. In our experiments, we select
five attributes, gender, workclass, education, native country
and income, denoted as A-E correspondingly. Their domain
sizes are 2, 8, 16, 41, and 2 accordingly. The second dataset,
Dutch Census, consists of 60420 tuples with 12 attributes.
In our experiment, we select five attributes, sex, household
position, household size, education level and income denoted
as A-E correspondingly and their domain sizes are 2, 8, 6, 6,
and 2 accordingly. The decision attribute is income with two
domain values of high income and low income. For loglinear
model fitting, we use the R package called MASS 1. We limit
the numbers of attributes for both datasets as five because the
MASS package cannot deal with more than 10 attributes. In
our future work, we plan to examine the recent development
of loglinear modeling for high dimensional data (e.g., [27])
for our discrimination detection and prevention.

1http://cran.r-project.org/web/packages/MASS/index.html

B. Detecting Discrimination

1) Adult Dataset: For the Adult dataset, our fitted log-
linear model is (AB,AD,BC,BD,CD,CE,DE). Its χ2

and G2 are 7563 and 6886 respectively with the degree
of freedom of 19840, which is much better than other
models. For example, χ2 and G2 of the independence model
(containing only 1-factor coefficients) are 53139 and 36962
respectively with the degree of freedom of 20927. Due to
space limitations, we skip discussions of coefficients of the
fitted loglinear models.

(a) Adult (b) Dutch

Figure 1. Conditional independence graph

Figure 1(a) shows the conditional independence graph
from the fitted graphical loglinear model for the Adult
dataset. Recall the pairwise property in Result 2, we know
there is no discrimination between the protected attribute X
and the decision attribute Y if there is no edge between
them. We can see from Figure 1(a) that there is no dis-
crimination between Gender (A) and income (E) because
of the absence of the edge A-E. However, when native
country (D) is considered as the protected attribute, there
is significant discrimination between native country and
income, as indicated by the presence of edge D-E in the
conditional independence graph. Note that the conditional
independence graph represents explicitly the relationship
among all attributes. This would be very useful to answer
“what if” questions when protected attributes and decision
attributes are not a-priori specified.

We emphasize our loglinear modeling based discrimi-
nation analysis approach can straightforwardly deal with
multiple protected attributes and decision attributes. For
example, when both gender (A) and workclass (B) are
considered as protected attributes and income (E) is con-
sidered as decision attribute in the Adult dataset, based on
the global Markov property shown in Result 2, we conclude
there is no discrimination between gender, workclass and
income because AB and E are separated by non-protected
attributes, education (C) and native country (D), as shown
in Figure 1(a). Similarly, we can reach the conclusion that
the Adult dataset does not have discrimination based on the
local Markov property of Result 2 because the neighbors of
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income (E) do not contain any protected attributes such as
gender and workclass.

2) Dutch Dataset: For the Dutch dataset, our fitted hi-
erarchical loglinear model is (ABC, ABD, ABE, ACD,
ACE, ADE, BCD, BCE, BDE, CDE). Its χ2 and
G2 are 467 and 383 respectively with the degree of free-
dom of 620. On the contrary, the independence model has
χ2 = 215032, G2 = 2145 and the degree of freedom
1132 whereas the pairwise loglinear model has χ2 = 5620,
G2 = 2145 and the degree of freedom 1002.

Figure 1(b) shows the conditional independence graph for
the Dutch dataset. We can see that there is discrimination
between sex (A) and income (E) because of the presence of
the edge A-E. Actually for the Dutch dataset, the neighbors
of income (E) contain all other attributes (A-D), thus based
on the local Markov property discrimination always exists
no matter how we choose protected attributes. This can also
be derived based on the global Markov property because
no protected attributes can be separated from the from
the decision attribute E by any subsets of non-protected
attributes.

C. Removing Discrimination

Our discrimination removal algorithm 1 modifies co-
efficients in the fitted loglinear model that contribute to
discrimination and uses the new modified model to gen-
erate synthetic data. We examine how the utility loss and
discrimination change with varying θ values (from 0 to 1
incremented by 0.1). For each θ value, we generate a new
data set. To measure data utility loss, we follow the common
practice and use χ2 test statistic, i.e., the sum of squared
residuals comparing the contingency table of the original
data with the contingency table of the generated synthetic
data cell-by-cell. The χ2 statistic in our context captures
both the error due to loglinear model fitting and the error
due to coefficient modification in our discrimination removal
algorithm. To examine how the generated synthetic data af-
fects the performance of predictive models, we also measure
utility loss in terms of the loss of classification accuracy.
We measure the discriminations by reporting the percentage
of subtables that violate the law requirements based on the
traditional risk difference and risk ratio. Specifically, the
threshold of risk difference is 0.05 and the threshold of risk
ratio is 1.25.

1) Utility Loss vs. Discrimination: For the Adult data,
we treat D as the protected attribute and E as the decision
attribute. Figure 2 (left column) shows how the utility loss
(χ2) and the discrimination (in terms of risk difference and
risk ratio) change with varying θ values for the Adult data.
We observe that the larger the θ (which corresponds less
distortion), the better utility of the generated data, the more
discrimination the generated data has. From the results, we
see the algorithm removes all discrimination (in terms of

both risk difference and risk ratio) and achieves good utility
preservation by setting θ with 0.4.

For the Dutch data, we treat A as the protected attribute
and E as the decision attribute. Figure 2 (right column)
shows how χ2, risk difference and risk ratio change with
varying θ values for the Dutch data. We observe the similar
pattern as that for Adult, i.e., less distortion preserves more
utility while incurring more discrimination. One difference
is that the generated data with θ = 0.4 indicates the
existence of discrimination in terms of risk ratio, as shown
in Figure 2(f), whereas the same generated data indicates no
discrimination in terms of risk difference.

2) Classification Accuracy vs. Threshold θ: The synthetic
data, which is guaranteed discrimination-free, can be used
for any analysis. In this section, we conduct experiments to
measure loss of classification accuracy. We use two standard
classifiers: decision tree (J48) and naive Bayes classifier
(NB). Figures 3 shows how classification accuracy changes
with varying θ values for Adult (left column) and Dutch
(right column) data respectively. The Y-axis of these plots
represents classification accuracy and each point is for a
specific value of θ which is varied from 0 to 1. In each figure,
we also report the baseline, i.e., the classification accuracy
on the original data. All results reported are obtained using
5-fold cross-validation.

It is observed that for the Adult data the classification
accuracy values of both decision tree and naive Bayes
classifier increase as the value of θ is increased from 0 to
0.3. This is mainly due to the distortion decrease in the
discrimination removal process. The classification accuracy
values keep almost unchanged when the value of θ is greater
than 0.3. The accuracy gap from the baseline is mainly due
to the fitting error of the loglinear model.

For the Dutch data, we can observe from Figure 3(b)
that the classification accuracy of J48 increases significantly
when θ is increased from 0.8 to 1.0. However, the classifi-
cation accuracy of naive Bayes classifier is not significantly
improved for naive Bayes classifier, as shown in Figure 3(d).

3) Removing Discrimination for Multiple Protected At-
tributes: Our loglinear model based discrimination removal
algorithm covers the general case where there are multiple
protected attributes and decision attributes in addition to a
set of non-protected attributes. A protected attribute may
have multiple domain values (e.g., race has domain values
of black, white, and asian) and a decision attribute may
also have multiple domain values (e.g., decision has domain
values accept, reject, and waiting-list). As the fitted loglinear
model can inherently capture and quantify discriminations
between multiple protected attributes and decision attributes,
our discrimination removal algorithm can also effectively
remove those multi-attribute discriminations.

Table II shows the results of applying our discrimination
removal algorithm over Dutch data where both A and C are
considered as protected attributes and E as the decision one.
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Figure 2. Utility loss and discrimination vs. varying θ
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Figure 3. Classification accuracy vs. varying θ

Table II
UTILITY LOSS AND DISCRIMINATION VS. VARYING θ FOR TWO PROTECTED ATTRIBUTES AC AND DECISION ATTRIBUTE E OF DUTCH DATA

θ
Protected attribute A Protected attribute C Protected attributes AC

χ2 RD(%) RR (%) χ2 RD(%) RR(%) χ2 RD(%) RR(%)
0.0 7769 0.0 0.0 7789 0.0 0.0 20214 0.0 0.0
0.1 6795 0.0 0.0 7076 0.0 0.0 17859 0.0 0.0
0.2 5906 0.0 0.0 6431 0.0 0.0 15713 0.0 54.1
0.3 5098 0.0 21.8 5852 0.0 30.5 13763 75.0 85.4
0.4 4370 0.0 38.1 5324 0.0 50.0 11999 93.7 87.5
0.5 3717 58.6 73.9 4843 47.2 63.8 10412 95.8 89.5
0.6 3135 65.2 78.8 4405 66.6 69.4 8997 95.8 89.5
0.7 2622 70.1 82.2 4003 73.6 76.3 7730 95.8 97.9
0.8 2175 73.6 82.2 3640 79.1 79.1 6611 95.8 97.9
0.9 1791 75.3 82.9 3313 81.9 81.9 5637 95.8 100.0
1.0 1459 75.3 83.3 3020 86.1 84.7 4811 97.9 100.0

As shown in the right-most column block, the utility loss
(χ2) decreases as θ increases whereas risk difference and
risk ratio increase accordingly. We also include the results
of applying our discrimination removal algorithm with only
one single protected attribute, e.g., for A in the second block,
and for C shown in the third block, respectively. Comparing
these three blocks, we see that for a fixed θ value, the utility
loss (χ2) is larger in the case of multiple protected attributes
than in the cases of a single protected attribute.

D. Discussion

Our evaluation here focuses on the use of two discrim-
ination metrics, risk difference and risk ratio, which have
been adopted by legislations. It is worth pointing out that
odds ratio (OR) is more appropriately used for quantifying
discrimination from the statistical viewpoint. As shown in
Section III-A2, our θ threshold is closely related to odds
ratio and actually θ is the logarithm value of odds ratio.
Thus we would argue the use of θ as an indicative metric
for discrimination.
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We would point out that it is challenging to determine the
optimal θ threshold to maximize the utility while minimizing
discrimination risk. We argue it is more appropriate to
examine the utility preservation while keeping an upper
bound on the risk measure. We also argue it is better to use
the utility loss metric (χ2) than the classification accuracy
(tied with one particular classifier) to quantify the utility
loss.

VI. CONCLUSIONS AND FUTURE WORK

We have developed a single unifying framework that
captures and measures discriminations based on loglinear
modeling. The derived conditional independence graph rep-
resents the conditional independence structures of attributes
in the historic dataset. Based on Markov properties, we
have shown how to determine the existence of discrimi-
nation patterns and how to interpret them. We derived the
interaction metric to quantify the discrimination (i.e., the
protected attributes’ effects on the decision attribute) and
showed its relationship with odds ratio. We developed a
method of solving the problem of discrimination prevention
by modifying those significant coefficients from the fitted
loglinear model and using the modified model to generate
the new data. We designed strategies of effectively changing
the coefficient values of the fitted loglinear model to meet
different discrimination requirements.

In our future work, we will study how to incorporate
background knowledge in model fitting. We can express
domain knowledge as some constraints when building graph-
ical loglinear models. For example, we can enforce no edge
between gender and race in the conditional independence
graph since they are biologically independent. We will also
examine the recent development of loglinear modeling for
high dimensional data (e.g., [27]) and extend our discrimi-
nation detection and prevention to the high dimensional data
scenario. We will develop discrimination analysis techniques
based on logistic regression, which is appropriate for ana-
lyzing a mixed set of nominal/ordinal and interval variables.
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[19] D. Barbará and X. Wu, “Loglinear based quasi cubes,” JIIS,
vol. 16, no. 3, pp. 255–276, 2001.

[20] X. Wu, D. Barbar, and Y. Ye, “Screening and interpreting
multi-item associations based on log-linear modeling.” KDD.
ACM, 2003, pp. 276–285.

[21] S. Sarawagi, R. Agrawal, and N. Megiddo, “Discovery-driven
exploration of olap data cubes,” in EDBT, 1998, pp. 168–182.

[22] Y. M. Bishop, S. E. Fienberg, and P. W. Holland, Discrete
Multivariate Analysis: Theory and Practice. The MIT Press,
1975.

[23] C. R. Blyth, “On simpson’s paradox and the sure-thing
principle,” Journal of the American Statistical Association,
vol. 67, no. 338, pp. 364–366, 1972.

[24] G. C. Elliott, “Interpreting higher order interactions in log-
linear analysis.” Psychological Bulletin, vol. 103, no. 1, p.
121, 1988.

[25] L. A. Goodman, “The analysis of multidimensional con-
tingency tables: Stepwise procedures and direct estimation
methods for building models for multiple classifications,”
Technometrics, vol. 13, no. 1, pp. 33–61, 1971.

[26] F. Kamiran and T. Calders, “Classification with no discrim-
ination by preferential sampling,” in BeneLearn Conference
on Machine Learning, 2010.

[27] F. Petitjean, L. Allison, and G. I. Webb, “A statistically
efficient and scalable method for log-linear analysis of high-
dimensional data,” ICDM, 2014, pp. 480–489.

119


