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Abstract—Recent progress in machine learning has placed a
growing emphasis on explainability and fairness. However, many
studies have confined efforts to leveraging explanatory techniques
to promote model fairness, overlooking the essential fairness of
the explanations. This study addresses this gap by proposing
a novel principle of equalized explainability, which fulfills fair
and uniform explanations across various demographic groups.
To this end, we introduce a quantitative measure for assessing
the explanation disparity leveraging Explainable Artificial In-
telligence (XAI) tools. To achieve equalized explainability, we
propose a reconstruction framework including modules for data
reconstruction, equalization of explanations, and performance
preservation. Experiments using real-world datasets demonstrate
this framework’s effectiveness in securing equitable and consis-
tent explanations across different groups, as well as achieving
trade-offs between fairness and explanation.

Index Terms—machine learning, fairness, XAI

I. INTRODUCTION

Machine learning (ML) has become prevalent in numerous
fields and achieved significant advancements recently. Despite
its widespread adoption, there is growing concern about the
trustworthiness of advanced ML techniques, including neural
networks, centered on fairness and explainability. The inherent
complexity of these models often results in opaque decision-
making processes and obscure underlying mechanisms. This
opacity has sparked an increasing demand for better explain-
ability in machine learning, highlighting the need for a deeper
understanding of how these models work and make decisions
[1]–[3].

To amend the lack of trustworthiness of machine learning
models and systems, the research fields of Explainable AI
(XAI) and Fairness-aware machine learning (Fair-ML) have
emerged in recent years [4]. Fair-ML focuses on creating
algorithms that make unbiased decisions, regardless of gender,
race, or other sensitive demographic information. It involves
developing fairness notions and implementing solutions that
treat all groups equitably and do not perpetuate or exacerbate
existing societal biases [5]–[10]. Two primary fairness notions
often discussed are individual fairness [11], [12], ensuring
similar individuals are treated similarly, and group fairness
[13], [14], focusing on equal treatment and outcomes for
different demographic groups. The Fair-ML solutions include
adjusting training data to reduce biases [15], [16], modifying

algorithms to prevent discriminatory outcomes [10], [17], or
tweaking biased machine-learning decisions [18], [19]. XAI
research focuses on developing methods and techniques that
make AI decisions understandable to humans, bridging the gap
between advanced AI algorithms and human interpretability.
This encompasses a range of strategies, from model-agnostic
approaches [20] that provide insights across various models
to model-specific techniques [21] tailored to particular types
of AI systems. Additionally, XAI research delves into global
explainability [22], which seeks to provide an overarching un-
derstanding of a model’s mechanisms, and local explainability
[23], which aims to elucidate the reasoning behind specific
individual decisions made by the model.

Recently, there has been a notable shift in research ex-
ploring the intersections of Fair-ML and XAI. Researchers
[24]–[28] are leveraging XAI technologies to interpret and
identify biases in ML models, aiming to address and mitigate
bias-related issues. However, it is an under-explored concern
that XAI might inadvertently introduce new types of biases,
especially against under-represented groups. While XAI strives
to make AI decisions more transparent and comprehensible, it
may inadvertently produce explanations that are not equally
accessible or understandable to all users [29]. This under-
explored aspect emphasizes the complexity of achieving fair-
ness in explainability and underscores the need for a nuanced
understanding of how explainability interacts with different
demographic groups, necessitating a more holistic approach
to developing AI systems that are both fair and transparent.

In light of this, we propose a new notion of fairness,
namely equalized explainability, requiring explanations offered
by the same model to be equal across multiple demographic
groups. Building on this idea, we develop a data reconstruction
approach that aims to fulfill the equalized explainability while
simultaneously preserving the data’s utility and the model’s
performance. Specially, we design a general framework with
three modules: a) The data reconstruction module preserves
data utility by retaining the patterns and structural features
of the original data through feature-specific reconstruction;
b) The equalization module ensures that demographic groups
receive equitable explanations from the XAI approach; c)
The performance preservation module maintains predictive
performance on the reconstructed data for predictive tasks. To



validate the efficacy of our methods, we conduct experiments
with real-world datasets. The results from these experiments
demonstrate that our approach effectively achieves equalized
explanations by reconstructing the datasets.

II. RELATED WORKS

In exploring fairness and explainability within the ML field,
existing studies primarily focus on enhancing the transparency
and fairness of model decision-making processes, separately.
Chakraborty et al. [30] utilize a K-Nearest Neighbors (KNN)
algorithm specifically designed to detect and evaluate biases in
black-box ML models. Hickey et al. [27] propose a new def-
inition of “Fairness by Explicability”, which embeds fairness
restrictions by combining adversarial learning with the model
explainability technique SHAP (SHapley Additive exPlana-
tions) [31]. This technique exhibits remarkable effectiveness in
mitigating the model’s bias and strengthening statistical equity.
In addition, Begley et al. [28] introduce an approach with the
explanatory tool SHAP to promote fairness with ML models.
Their attention lies in assigning the cumulative disparity of
a model to specific input features, regardless of situations
when sensitive attributes are not directly involved. This work
effectively displays the capabilities to improve the fairness
and explainability of ML models without compromising their
performance. These studies above collectively demonstrate a
trend of leveraging explainability as a tool or an application to
influence and address fairness issues with ML models. With
an in-depth exploration of the interaction between fairness and
explainability, the concept of fairness should be considered in
a broader sense in the context of explanation. Concurrently,
the concept of fidelity in explanations becomes increasingly
essential. Yeh et al. [32] propose fidelity as a crucial measure
to evaluate the accuracy of model explanations. This concept
is fundamental when examining the influence of explanations
on different groups, as there can be considerable differences
in the fidelity of explanations provided to these groups.

Efforts involve the development of algorithms that incor-
porate fairness and explainability [25], [26], applying tools
such as SHAP to get fair results through adversarial learning
[27], and improving interpretability by employing SHAP to
achieve a fair decision-making process [28]. Also, Aı̈vodji et
al. [33] have identified the concept of fairwashing as a means
to conceal biases in ML algorithms by providing misleading
explanations. While the above studies establish a connection
between fairness and explainability, primarily focusing on
applying explanatory techniques to assist the model’s fairness,
they fail to elucidate what a fair explanation is. In view of
this, it becomes essential to embed fairness intrinsically within
explanations themselves rather than just facilitating fairness
through the application of explanation. Although some other
studies view fidelity as a reliable measure of fair explanation,
claiming that similar levels of high explanation fidelity across
demographic groups signify their fairness [29], [34], this
perspective may inadvertently obscure the full spectrum of
what constitutes a fair explanation. It is particularly true when
equal levels of high explanation fidelity across groups do not

necessarily equate to consistent or equitable explanations for
those groups. A recent study corroborates this perspective,
indicating that disparities in explanations tend to arise in
complex and non-linear models across demographic groups,
and the inconsistency is particularly obvious with certain post-
hoc explanatory methods [29].

The study accomplished by Dai et al. [29] has attracted con-
siderable attention. This study centers on analyzing the quality
of explanations generated via post-hoc explanation techniques
among various demographics, illustrating the significance of
high-quality explanations for all groups. Accordingly, Bal-
agopalan et al. [34] propose a point of view in which an
explanatory model is considered fair if it demonstrates high
fidelity for all protected groups. However, this perspective may
fail to consider the issue of consistency in explanations among
different groups. Associating high fidelity with explanation
could ignore the disparities in understanding among demo-
graphic groups, thereby indicating the necessity for a more
delicate method to establish fairness in explanations.

Inconsistency or disparities in the explanations received by
different groups within the same model may lead to biases in
understanding the model among these groups, even though the
fidelity of those explanations provided to different groups may
be similar. Therefore, we believe this bias in comprehension
can be seen as the model explanation’s prejudices or discrim-
ination against certain groups, resulting in inequality in trust
and reliance within demographics. Such biased explanations
gradually weaken the model’s trustworthiness and eventually
trigger certain groups’ distrust or even rejection of the conclu-
sions or recommendations derived from the model, impacting
its effectiveness and applicability in real-world scenarios. For
example, suppose a scenario where the same bank loan model
provides distinct explanations for credit approval decisions to
male and female users. While this loan model emphasizes
marital status for female users and credit history for male
users, this disparity in explanations can be considered dis-
crimination against females. If credit history and marital status
play an equal impact on the possibility of credit approval for
all demographics, then these features should be evaluated to
have identical roles in the decision-making process. Therefore,
the model’s explanations for various groups should reflect this
equality, avoiding emphasizing or understating the contribution
of certain features for a particular group, guaranteeing equity
and fairness in the model’s explanations for any demographic.

III. PRELIMINARIES

A. Fairness Notions

In this study, we consider a classification model f trained on
a dataset D. The dataset D is formed by the tuple < Xi, Yi >,
and i ∈ {1, ...,m} is a data point index in D. X consists of
several demographic groups identified by sensitive attributes
such as race or gender. Y is a categorical label vector.

B. Feature Importance Explanation

Feature Importance (FI) is a prevalent metric in inter-
pretative models that serves as an explanation mechanism,



notably in attribution-based methods such as SHAP [31].
SHAP provides a cooperative game theory-based approach to
quantify the contribution of each feature to a model’s pre-
dictions, assigning a methodical allocation of Shapley Values
to each feature for each instance. This attribution indicates
how the presence or absence of a feature changes the model’s
prediction, thus elucidating the impact of that specific feature
and effectively acting as an explanation by highlighting the
relative importance of each feature. Concurrently, the FI
metric conforms to the principle of additive feature attribu-
tion, which suggests that the total sum of individual feature
attributions approximates the model’s prediction [31], [35].
Precisely, the definition of FI is the average absolute value
of the attribution of a feature across all instances, expressed
as FIj =

∑m
i=1‖φ

(i)
j ‖, where φ

(i)
j represents the Shapley

Values or the attribution value of the j-th feature for the i-
th instance, and m is the total number of instances. These
attributions strengthen comprehension of the model’s behavior
at a detailed level, thereby delivering an in-depth explanation
of the predictive features.

IV. QUANTIFYING EXPLAINABLITY DISPARITY

A. A New Notion of Equalized Explainability

Without loss of generality, we divide the dataset D into
k groups, denoting as DG1

, DG2
, . .., and DGk

, based on
the sensitive feature(s). Any arbitrary explanatory tool can be
employed to generate explanations for the trained f(·) over
the dataset D, denoted as E(f,D). To assess the disparity in
explanations across different groups within a given dataset, we
introduce a non-negative function, denoted as ∆(·):

∆p,q(E, f,D) =
∥∥E(f,DGp

)− E(f,DGq
)
∥∥, (1)

where p, q are group indexes. This function is designed to
quantify the disparity in explanations between any two distinct
groups within the dataset.

By measuring the differences in explanations provided to
each group pair, i.e., Gp and Gq , ∆(·) offers a quantitative
approach to understanding inequalities in the explanation pro-
cess. We define the equalized explanation using the following
criterion:

max
1≤p,q≤n,

p 6=q

∆p,q(E, f,D) ≤ ε, (2)

where ε is the pre-defined threshold. If the criterion is met,
we consider this model f to be fairly explainable.

B. Equalized Explanation via Feature Importance

In this study, we propose a new metric, Feature Impor-
tance Disparity (∆FI), to evaluate the consistency of fea-
ture importance-based explanation across demographic groups.
Without loss of generality, we select two arbitrary groups, Gp

and Gq . This metric is designed to measure the dissimilarity
in the distribution of FI between DGp

and DGq
.

∆FI =

n∑
j=1

‖FIj,Gp − FIj,Gq‖ (3)

Where FIj,Gp represents the j-th feature’s FI for Group Gp,
calculated as

∑mGp

i=1 ‖φ
(i)
j ‖, with mGp

being the number of in-
stances in Group Gp. ∆FI reflects the aggregated explanation
disparity across instances and features out of two demographic
groups.

V. ACHIEVING EQUALIZED EXPLANATION THROUGH
DATA RECONSTRUCTION

Based on the proposed notion and metric for the explanation
disparity, we develop a comprehensive framework aimed at
mitigating these disparities in AI explanations. This framework
is specifically designed to address the unequal distribution of
clear and comprehensible explanations across different demo-
graphic groups, striving towards achieving a state of equalized
explanation. This framework is composed of three integral
modules: data reconstruction, equalization of explanations,
and preservation of prediction performance. We introduce the
modules in the following subsections.

A. Data Reconstruction Module

1) AutoEncoder Reconstruction: The AutoEncoder model
is the core component of our data reconstruction module. The
AutoEncoder AE(X) encodes the original data X into a latent
space Z, accurately representing its fundamental structure
and distributional properties, then reconstructs X̂ from the
latent space Z. The AutoEncoder model is usually built on a
multiple-layer neural network which is trained to minimize re-
construction errors. To maintain the consistency data patterns
between X̂ and X , we employ a trainable model AE(X)
within a loss function called LAE , expressed as,

LAE = ‖X −AE(X)‖22. (4)

Optimizing LAE is designed to guarantee a minimal discrep-
ancy between X̂ and X , delivering an accurate reconstruction
of the original data’s characteristics and distribution.

2) Prototype Representation Constraints: In addition to
the conventional AutoEncoder, which provides a continuous
representation of data in a latent space, we adopt prototype
representation constraints that epitomize a typical instance of
a specific class within a dataset and encapsulate its essential
characteristics. Prototypes are vital for enhancing interpretabil-
ity because they can discern the defining features of a partic-
ular class or cluster by pinpointing prototypes for each class
[36]. In particular, we incorporate the prototype representation
constraints as a loss function. For the samples conditioned by
any arbitrary label l out of the original data X , we learn the
prototype representation using the following steps.
• Obtain label-specific encoding (El). We extract the en-

coded representations corresponding to label l and denote
them as El ← {Zi|Yi = l, 1 ≤ i ≤ m, 0 ≤ l ≤ L};

• Calculate the centroid (cl). The centroid of El is calcu-
lated as cl ← 1

|El|
∑

Zi∈El
Zi;

• Computer instance distances to the centroid (disti). For
each Zi in El, the distance to the centroid cl is computed
and denoted as disti ← ||Zi − cl||2;



• Get the prototypes (pl) given label l. El is sorted based on
the distances disti, and the top-H samples are selected.
The prototype pl for label l is then the mean of these
top-H samples, pl ← 1

H

∑H
h=1 Zh.

The summary of prototype calculation with details is presented
in Algorithm 1.

Then, we formulate the prototype constraints LProto as:

LProto =

C∑
l=1

∑
i:Yi=l

‖Zi − pl‖22 (5)

Incorporating the loss function in Eq. 5 promotes the repre-
sentation of categorical outcomes during the training and the
interpretability of the reconstruction.

Algorithm 1 Prototype Calculation
1: procedure PROTOTYPECALCULATION(D, encoder,H)
2: for each pair < Xi, Yi > in the dataset D do
3: Zi ← encoder(Xi)
4: end for
5: for each label l in the label domain Y do
6: El ← {Zi|Yi = l; 1 ≤ i ≤ m, 0 ≤ l ≤ L}
7: cl ← 1

|El|
∑

Zi∈El
Zi

8: disti ← ‖Zi − cl‖2 for each Zi ∈ El

9: Sort El based on disti and select top-H samples
10: pl ← 1

H

∑H
h=1 Zh

11: end for
12: end procedure

3) Data-specific Reconstruction Constraints: In addition
to the data-agnostic reconstruction constraints, we deploy
two data reconstruction constraints tailored to demographic
datasets.

a) Feature-specific Constraints for Real Demographic
Datasets: A customized reconstruction strategy provides gran-
ular control on each feature, guaranteeing that the recon-
structed data remains meaningful and closely reflects real-
world scenarios. For example, for features like “age” or “edu-
cation level”, it is logical that their values should only increase;
for features like “income” or “working hour”, increasing
their values might be more challenging than decreasing it;
and for features like “race” or “gender”, they should remain
unchanged to reflect their inherent nature.

b) Asymmetric Quadratic Function with Feature-specific
Constraints: To achieve precise control on each feature, we in-
troduce an asymmetric quadratic metric, “deviation”, denoted
as d. Especially, dj = X̂j − Xj is the difference between
the reconstructed data X̂ and the original data X on the j-
th feature. The asymmetric quadratic loss function assigns
distinct penalty weights for deviations per feature, ensuring
that each feature’s movement meets a specific direction. A
positive dj indicates a feature’s value in X̂j exceeds Xj ,
while a negative dj signifies the opposite. The square of dj

guarantees differentiality, and any change in d incurs a cost.
Mathematically, the asymmetric quadratic loss function is:{

aj1 × ‖dj‖ if dj ≥ 0

aj2 × ‖dj‖ if dj < 0

where aj1, a
j
2 > 0,

and j is the index of feature,

where aj1 and aj2 are feature-specific weights.
We demonstrate three scenarios for choosing aj1 and aj2

weights, as shown below:
• aj1 < aj2: represents feature j that is easier to increase

than decrease, like “age” or “education level”.
• aj1 = aj2: denotes feature j that should remain unchanged,

like “gender” or “race”.
• aj1 > aj2: indicates feature j that is harder to increase

than decrease, like “income” or “working hour”.
We also define the upper and lower boundaries of each feature
in X̂ based on the respective maximum and minimum values
found in the original dataset X , thus ensuring that X̂ captures
the feature-wise characteristics.

c) Data-specific Reconstruction Constraints: We pro-
pose a customized reconstruction norm, which utilizes the
asymmetrical quadratic function with feature-specific bound-
ary restrictions. By applying parameters aj1 and aj2 to each
feature, we can derive corresponding deviations dj from the
reconstructed X̂ , thereby establishing the customized loss
function LDS :

LDS =

n∑
j=1

(
aj1 ·max(0, dj) + aj2 ·min(0, dj)

)
(6)

Here, aj1 and aj2 are the positive and negative deviation penalty
coefficients for feature j.

B. Equalized Explainability Module

We introduce a module for achieving equalized explanations
via LEqual loss function. This module aims to guarantee that
groups have comparable insights or knowledge when making
decisions across groups with moderate ∆FI in Eq. (3).

1) Equalized Explainability via Feature Importance: By
leveraging the concept of FI , we define
• Ldiff : the mean of the squared differences in FI for each

feature across the groups, formalized as:

Ldiff =
1

n

n∑
j=1

(FIj,Gp
− FIj,Gq

)2

• Lavg: the absolute difference in FI for each feature
across the groups, defined as:

Lavg =
1

n

n∑
j=1

∣∣FIj,Gp − FIj,Gq

∣∣
where FIj,Gp and FIj,Gq represent the FI of the j-th feature
in Group Gp and Group Gq , respectively. The final equilized
explainability loss, LEqual , is the sum of these two losses.

LEqual = Ldiff + Lavg (7)



To achieve equalized explanations, Lavg and Ldiff evaluate
the disparity in FI between groups Gp and Gq through distinct
approaches. Lavg calculates the average absolute difference in
FI , assigning equal weight to disparities with all features.
This loss function provides a straightforward measure of the
overall consistency in FI among groups. Nevertheless, Ldiff

is designed to calculate the sum of squared differences in FI
between groups. It inherently assigns a greater weight to large
disparities. This loss aims to evaluate the distribution pattern
of differences by picking out the most significant disparities
in FI , emphasizing the extreme difference in FI between
groups. Suppose LEqual solely relies on Lavg loss. In that
case, there is a possibility that there will be disproportionately
affected by small disparities that are prevalent across the
features, resulting in the model neglecting crucial features that
exhibit considerable disparities between groups. Further, it has
the potential to diminish the model’s interpretive capability.
Conversely, a LEqual composed solely of Ldiff may cause
the model to excessively emphasize features with significant
disparities, disregarding smaller, average disparities. When
LEqual includes Lavg and Ldiff , Lavg guarantees that the
model acknowledges small disparities, while Ldiff prevents
the model from overreacting to large disparities. Therefore, the
model may effectively decrease the average disparities with FI
among different groups while simultaneously considering the
overall distribution of these disparities, leading to a balanced
and comprehensive interpretation.
LEqual combines Lavg and Ldiff to address widespread

minor and major disparities across features. By utilizing the
Cauchy-Schwarz Inequality, an upper constraint is naturally
established on Lavg , determined as

√
Ldiff/n. This constraint

keeps the model does not unnecessarily compress disparities of
FI to similar levels, preserving reliable interpretations of im-
portant features in the training process. When Lavg approaches
its upper bound

√
Ldiff/n, it indicates large disparities in

FI between groups. This constraint prevents a widespread
decrease or fluctuation in FI , guaranteeing consistent focus on
the appropriate distribution of FI during the training process.

C. Prediction Performance Preservation Module

To preserve the prediction performance, we introduce a
loss function, LPred = f(X̂). This function guarantees that
X̂ has comparable predictive performance to the original
dataset, which is crucial for preserving the model’s predictive
capability when promoting equalized explainability.

D. Objective Function of The Proposed Framework

Finally, we have the objective function L as a combination
of all modules to contribute to the reconstruction of X̂ and
achieve equalized explainability across groups. The objective
function as L is formulated as,

L = β1LAE +β2LProto+β3LDS +β4LEqual+β5LPred (8)

It is important to highlight that the objective function in our
framework is differentiable. This differentiability implies the
function can be efficiently solved using gradient descent and

seamlessly integrated with common deep learning packages,
such as PyTorch and TensorFlow. As a result, our framework’s
compatibility with these packages ensures a more straight-
forward and accessible implementation process, allowing re-
searchers and practitioners to leverage our approach within the
familiar ecosystems of established deep learning tools.

VI. EXPERIMENTS

In this section, we implement the proposed modular frame-
work based on Captum [37], an interpretability framework
designed for PyTorch. We evaluate the proposed methods on
several real-world datasets and using various settings. As a
comparison, we implement the baseline method using L1 and
L2 regularization. The baseline objective is formulated as

L = β1LAE+β2LProto+β3LReg+β4LEqual+β5LPred, (9)

where LReg = L1 + L2 = ‖X̂ −X‖11 + ‖X̂ −X‖22.

A. Experiment Datasets

1) Adult Dataset: The Adult dataset is extracted from
the 1994 Census database, and the task is to predict if an
individual’s annual income exceeds $50,000 based on cen-
sus features. This dataset contains 48,842 samples and 14
attributes, including age, education, sex, occupation, income,
marital status, etc. In this work, we consider the feature ‘sex’
to be a sensitive feature and divide the dataset into two
demographic groups. The label is income, i.e., whether the
income is larger than 50k.

2) Dutch Dataset: The Dutch dataset consists of 60,420
instances, each described by 12 attributes, including age,
education level, economic status, household position, sex, etc.
We consider ‘sex’ as the sensitive attribution. The ML task
for the Dutch dataset is to predict occupation levels.

B. Experimental Results

1) Data Reconstruction Evaluation: To evaluate the re-
construction similarity between X and X̂ , we employ the
dimensional reduction and clustering methods. For dimen-
sional reduction, we adopt Uniform Manifold Approximation
and Projection (UMAP), an efficient dimensionality reduction
approach that preserves the global data structure in a lower-
dimensional space [38]. For clustering, we adopt the K-means
clustering algorithm to group data points together based on
their similarity in feature space [39] and evaluate whether
samples from X and X̂ can be distinguished in the clustering.

We leverage UMAP to illustrate whether X and X̂ exhibit
similar distribution patterns within the dimensionality-reduced
space, implying the likelihood of them sharing structural
characteristics within the high-dimensional space. The original
data samples X are denoted as blue dots, and reconstructed
samples X̂ are denoted by orange dots. Fig. 1 (a) and Fig. 1
(c) show the result of the baseline method, and Fig. 1 (b)
and Fig. 1 (d) show the result of our proposed method.
The comparison illustrates the proposed method generates
fidelitous reconstructed data. This visual similarity is espe-
cially pronounced in the Dutch dataset, which indicates that



X̂ successfully preserves the structural characteristics of the
original data X , demonstrating a structural resemblance to X .

Fig. 1. UMAP Visualizations of Adult (a,b) and Dutch (c,d) Datasets. (a) and
(c) Represent the Baseline Approach, While (b) and (d) Denote Our Proposed
Approach.

UMAP maps the data samples in a low-dimensional
space and visualizes the reconstruction similarity in the low-
dimensional space. To compare the original data points and
the reconstructed data points in the original space, we adopt
K-means clustering and conduct a quantitative evaluation. We
apply the K-means algorithm on the mix of original data X
and the reconstructed data X̂ with 2 clusters. We evaluate the
distribution ratios of X and X̂ across various cluster counts as
a quantitative measure of their similarity. Table I reveals that
the distribution ratio of X in most clusters is close to 50%
in both the Adult and Dutch datasets, indicating a challenge
in distinguishing X from X̂ in feature space and suggesting
a high degree of similarity between the two datasets, espe-
cially in the Adult dataset. While acknowledging the inherent
limitations of the K-means, such as assumptions about data
distribution and the necessity of choosing cluster count, we
have applied it with caution in our analysis. This cautious
utilization of K-means allows us to effectively quantify the
similarity between X and X̂ , providing insights despite its
inherent constraints.

2) Equalized Explainability: Given the prior statement em-
phasizing the importance of preserving careful balance in our
modular design, we evaluate the performance of the equalized
explainability module with a suitable ∆FI . In line with our
comprehensive approach, we will not present a quantitative
display of ∆FI , as it involves a trade-off between data fidelity
and model accuracy alongside explainability.

TABLE I
CLUSTER LABEL IN DIFFERENT CLUSTERS FOR RECONSTRUCTION

METHOD APPLIED IN THE ADULT DATASET.

Clusters n 2 3 4
Cluster Label 0 1 0 1 2 0 1
Baseline(%) 50.00 50.00 49.99 50.00 50.10 49.87 50.00

Ours(%) 50.00 50.00 49.99 50.00 50.10 49.88 50.00
Clusters n 4 (Cont.) 5

Cluster Label 2 3 0 1 2 3 4
Baseline(%) 50.13 52.59 49.93 50.00 52.97 50.29 50.31

Ours(%) 50.13 52.44 49.94 50.00 52.97 50.12 50.31

TABLE II
CLUSTER LABEL IN DIFFERENT CLUSTERS FOR RECONSTRUCTION

METHOD APPLIED IN THE DUTCH DATASET.

Clusters n 2 3
Cluster Label 0 1 0 1 2
Baseline(%) 51.78 48.36 45.74 48.23 57.58

Ours(%) 51.34 48.76 49.01 53.75 43.84

a) Adult: Feature importance in the original data X
(Fig. 2(a)) reveals obvious gender-based explanation dispar-
ities between groups, illustrating original explanation differ-
ences between genders within the same model. The equalized
explainability module efficiently mitigates gender-based expla-
nation disparities in feature importance across groups within
the regular baseline, improving equal explanations, as shown
in Fig. 2(b). The result of the feature-specific reconstruction
strategy is illustrated in Fig. 2(c). Although there are still
some disparities in certain features, these differences are
explained by intentional constraints implemented through the
Asymmetric Quadratic Function with explicitly stated a1 and
a2 for each feature for reflecting real-life scenarios.

b) Dutch: We utilize the Dutch dataset to evaluate
the achievement of equalized explainability. Fig. 3(a) re-
veals group-level explanation disparities in the Dutch dataset,
characterized by unequal feature importance across groups.
effectively reduces feature importance disparities as shown
in Fig. 3(b). In order to better reflect real-life scenarios, our
proposed reconstruction approach prioritizes the orientation of
each feature with specific-stated a1 and a2 for the Asymmetric
Quadratic Function. Although some groups’ disparity persists
in these features, the overall trend is clearly toward achieving
equal explanations, as shown in Fig. 3(c).

Both the baseline and our proposed reconstruction strategies
effectively promote balanced explainability, providing consis-
tent and fair explanations across groups. The baseline recon-
struction approach excels in mitigating gender-based expla-
nation disparities, whereas the feature-specific reconstruction
module finely adjusts specific features while reflecting real-life
scenarios, accomplishing balanced explanations.

3) Model Accuracy: We evaluate the trade-off between
achieving data similarity, equalized explainability, and model
predictive performance by comparing the accuracy of methods,
as shown in Table III.

a) Adult: The accuracy of f(X) is 84.50% using the
original dataset. With the baseline method, we observe a
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(c) Reconstructed Data Using Our Method
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Fig. 2. Visualizations Equalized Explanation of Reconstructed Adult Dataset.

reduction in accuracy to 80.10%. This reduction indicates
that while equalizing explanations are compelling, it comes
at the cost of some predictive accuracy. Our proposed method
achieves an accuracy of 83.26%, closer to the binary model’s
performance, implying a better balance between preserving
predictive performance and achieving equalized explainability.

b) Dutch: The accuracy of f(X) is 83.40% on the
original dataset. When we apply the baseline, there is a slight
decrease in test accuracy to 82.14%, a trend also noted in the
Adult dataset, which suggests that the process of equalizing
explanations has a minor impact on model accuracy. However,
in our method, the test accuracy drops slightly to 79.66%. The
specific constraints applied in the customized reconstruction
process considerably influence the model’s predictive ability.

TABLE III
MODEL ACCURACY COMPARISON ON ADULT AND DUTCH DATASETS.

Dataset Accuracy Classic Baseline Ours
Adult 84.50% 80.10% 83.26%
Dutch 83.40% 82.14% 79.66%
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Fig. 3. Visualizations Equalized Explanation of Reconstructed Dutch Dataset.

VII. CONCLUSION

This research centers on advancing fair explanations in
machine learning, emphasizing the delivery of uniform and
unbiased explanations across various demographic groups.
Our proposed framework comprises three distinct modules,
each targeting a crucial aspect: ensuring equality in expla-
nations, maintaining data similarity, and preserving model
accuracy. The design of our framework mirrors real-world
complexities, offering significant insights and contributions to
the field of fairness-aware machine learning and explainable
artificial intelligence. Experimental evidence confirms that our
approach effectively ensures equitable and consistent expla-
nations across different groups. This achievement marks a
substantial stride towards bolstering trust and transparency in
the realm of fairness-aware machine learning systems.
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[14] T. Räz, “Group fairness: Independence revisited,” in FAccT ’21: 2021
ACM Conference on Fairness, Accountability, and Transparency, Virtual
Event / Toronto, Canada, March 3-10, 2021. ACM, 2021, pp. 129–137.

[15] L. Zhang, Y. Wu, and X. Wu, “Achieving non-discrimination in data
release,” in Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, Halifax, NS, Canada,
August 13 - 17, 2017. ACM, 2017, pp. 1335–1344.

[16] S. Biswas and H. Rajan, “Fair preprocessing: towards understand-
ing compositional fairness of data transformers in machine learning
pipeline,” in ESEC/FSE ’21: 29th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, Athens, Greece, August 23-28, 2021. ACM, 2021, pp.
981–993.

[17] M. Wan, D. Zha, N. Liu, and N. Zou, “In-processing modeling tech-
niques for machine learning fairness: A survey,” ACM Trans. Knowl.
Discov. Data, no. 3, pp. 35:1–35:27, 2023.

[18] M. Hardt, E. Price, and N. Srebro, “Equality of opportunity in supervised
learning,” in Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, 2016, pp. 3315–3323.

[19] Y. Wu, L. Zhang, and X. Wu, “Counterfactual fairness: Unidentification,
bound and algorithm,” in Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, Macao, China, August 10-16,
2019. ijcai.org, 2019, pp. 1438–1444.

[20] M. T. Ribeiro, S. Singh, and C. Guestrin, “Model-agnostic interpretabil-
ity of machine learning,” CoRR, 2016.

[21] C. Molnar, Interpretable Machine Learning, 2nd ed., 2022.

[22] R. Saleem, B. Yuan, F. Kurugollu, A. Anjum, and L. Liu, “Explaining
deep neural networks: A survey on the global interpretation methods,”
Neurocomputing, pp. 165–180, 2022.

[23] M. R. Zafar and N. Khan, “Deterministic local interpretable model-
agnostic explanations for stable explainability,” Mach. Learn. Knowl.
Extr., no. 3, pp. 525–541, 2021.

[24] J. Dai, S. Upadhyay, S. H. Bach, and H. Lakkaraju, “What will it take
to generate fairness-preserving explanations?” CoRR, 2021.

[25] A. Ortega, J. Fiérrez, A. Morales, Z. Wang, M. de la Cruz, C. L. Alonso,
and T. Ribeiro, “Symbolic AI for XAI: evaluating LFIT inductive
programming for explaining biases in machine learning,” Comput.,
no. 11, p. 154, 2021.

[26] A. Stevens, P. Deruyck, Z. V. Veldhoven, and J. Vanthienen, “Ex-
plainability and fairness in machine learning: Improve fair end-to-end
lending for kiva,” in 2020 IEEE Symposium Series on Computational
Intelligence, SSCI 2020. IEEE, 2020, pp. 1241–1248.

[27] J. M. Hickey, P. G. D. Stefano, and V. Vasileiou, “Fairness by ex-
plicability and adversarial SHAP learning,” in Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part
III, ser. Lecture Notes in Computer Science. Springer, 2020, pp. 174–
190.

[28] T. Begley, T. Schwedes, C. Frye, and I. Feige, “Explainability for fair
machine learning,” CoRR, 2020.

[29] J. Dai, S. Upadhyay, U. Aı̈vodji, S. H. Bach, and H. Lakkaraju, “Fairness
via explanation quality: Evaluating disparities in the quality of post hoc
explanations,” in AIES ’22: AAAI/ACM Conference on AI, Ethics, and
Society, Oxford, United Kingdom, May 19 - 21, 2021. ACM, 2022, pp.
203–214.

[30] J. Chakraborty, K. Peng, and T. Menzies, “Making fair ML software
using trustworthy explanation,” in 35th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2020, Melbourne,
Australia, September 21-25, 2020. IEEE, 2020, pp. 1229–1233.

[31] S. M. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, 2017, pp. 4765–4774.

[32] C. Yeh, C. Hsieh, A. S. Suggala, D. I. Inouye, and P. Ravikumar, “On
the (in)fidelity and sensitivity of explanations,” in Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, 2019, pp. 10 965–10 976.

[33] U. Aı̈vodji, H. Arai, S. Gambs, and S. Hara, “Characterizing the risk
of fairwashing,” in Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, 2021, pp. 14 822–14 834.

[34] A. Balagopalan, H. Zhang, K. Hamidieh, T. Hartvigsen, F. Rudzicz, and
M. Ghassemi, “The road to explainability is paved with bias: Measuring
the fairness of explanations,” in FAccT ’22: 2022 ACM Conference on
Fairness, Accountability, and Transparency, Seoul, Republic of Korea,
June 21 - 24, 2022. ACM, 2022, pp. 1194–1206.

[35] Y. Zhou, S. Booth, M. T. Ribeiro, and J. Shah, “Do feature attribution
methods correctly attribute features?” in Thirty-Sixth AAAI Conference
on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI
2022 Virtual Event, February 22 - March 1, 2022. AAAI Press, 2022,
pp. 9623–9633.

[36] A. V. Looveren and J. Klaise, “Interpretable counterfactual explanations
guided by prototypes,” in Machine Learning and Knowledge Discovery
in Databases. Research Track - European Conference, ECML PKDD
2021, Bilbao, Spain, September 13-17, 2021, Proceedings, Part II, ser.
Lecture Notes in Computer Science. Springer, 2021, pp. 650–665.

[37] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh,
J. Reynolds, A. Melnikov, N. Kliushkina, C. Araya, S. Yan, and
O. Reblitz-Richardson, “Captum: A unified and generic model inter-
pretability library for pytorch,” CoRR, 2020.

[38] L. McInnes and J. Healy, “UMAP: uniform manifold approximation and
projection for dimension reduction,” CoRR, 2018.

[39] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf.
Theory, no. 2, pp. 129–136, 1982.


