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Abstract—Data-driven decision-making systems are progres-
sively deployed in high-risk scenarios, raising significant so-
cial concerns about their potential to perpetuate inequalities
related to demographic characteristics. Recent research efforts
have focused on ensuring equal decision-making for individuals,
primarily through model adjustments and data modification
techniques. However, these approaches often rely on distance-
based formulation, overlooking the practical aspects of achieving
equity. To address this gap, our study introduces a novel method
that leverages actionable recourse to reflect the feasibility of
attaining fairness in decision-making. This method leverages
constrained optimization to achieve fairness within limited bud-
gets, thereby balancing equity with practical constraints. We
present experimental results that demonstrate the superiority
of our approach over traditional distance-based methods. These
results underscore our method’s potential in ensuring equitable
decisions and maintaining feasibility and efficiency in real-world
applications.

Index Terms—machine learning, algorithmic fairness

I. INTRODUCTION

The recent advance of machine learning has enabled un-
precedented advancements in various sectors, ranging from
healthcare, job placement, recommendation, and criminal jus-
tice. However, as these technologies become deeply integrated
into critical decision-making processes, lack of fairness and
equity has emerged as central concerns. Machine learning
models, reflecting the patterns in the training data, have shown
tendencies to perpetuate and even exacerbate existing societal
inequities. This is particularly evident in cases where algorith-
mic decisions disproportionately affect individuals character-
ized by race, gender, or other demographic factors. Fairness-
aware machine learning [1]–[11] seeks to address the ethical,
social, and legal implications of decision systems, particularly
their propensity to inherit and amplify existing prejudice, or
even introduce new biases against certain demographic groups.
In the fair machine learning literature, researchers have put
forth various techniques for fair predictions, including model
tweaking [1]–[4], data modification [5]–[8], and decision ad-
justment [9]–[11].

Against this backdrop, algorithmic recourse emerges as
a vital tool in recent decision-making domains, aiming at
providing individuals who have experienced adverse algorith-
mic predictions with a means to convert these unfavorable
outcomes into favorable ones [12]–[14]. Notably, through
recourse methods like actionable recourse [15], feasible and

actionable counterfactual explanations (FACE) [16], and coun-
terfactual reasoning-based explanations [17], those unfavor-
able predictions can be flipped with pre-defined costs, making
recommendations to the original data by a series of actions.
Equalizing Recourse [18] steps into this gap by introducing
a regularization method using the boundary distance within a
recourse framework, aiming to guarantee balanced penalties
for unfavorable outcomes among different groups.

Existing practices in fairness for machine learning models
often fall short of addressing the issue of biased decision-
making [19]. To illustrate one common challenge, let us
consider a running example. Suppose a model is utilized
for loan approval, and its decisions are based on several
factors, such as income, account balance, residential address,
and marital status. While conventional fair decision-making
methods focus on data adjustment or action recommendations
to minimize discrimination, they typically do not consider the
varying degrees of influence each modification has on the
decision-making process. For instance, increasing income and
account balances can substantially improve the chances of loan
approval, whereas changes in residential address or marital
status might have a negligible impact. Existing approaches
that rely solely on the distance from the decision boundary
fail to capture the actual effort required to change a deci-
sion, ignoring the importance of key features [1], [20], [21].
This oversight can lead to impractical solutions toward fair
decisions, as models might focus on applicants closer to the
decision threshold and overlook those who could improve their
chances with minor changes. Such a narrow focus on boundary
proximity does not guarantee fair outcomes and often leads to
inefficient resource allocation if the fair model is deployed.
This running example highlights the need for more nuanced
and holistic approaches in fair machine learning practices to
ensure equitable and effective decision-making.

Our motivation is driven by pursuing a method that recog-
nizes the importance of key features and accurately captures
the effort required for prediction reversal, thereby promoting
fair outcomes with minimal actionable modifications. Addi-
tionally, we expect our strategy to guarantee the fair global
distribution of resources beyond local adjustments. Therefore,
we are motivated to propose a novel framework to model the
actionable recourse and search for minimal modifications with
constrained optimization. Our contributions are summarized
as follows: i) Our study uncovers significant limitations in



the prevalent practice of using decision boundary distance
as a primary criterion to reverse individual predictions in
fairness-oriented machine learning models. ii) We develop a
resource allocation method to fulfill fairness through globally
constrained optimization rather than local adjustments, ensur-
ing fairness among different groups throughout the decision-
reversal process.

II. PRELIMINARIES

A. Notions and Settings

In this manuscript, we utilize the following notions to
describe the problem and solutions. A dataset D has m
instances and w features, where m,w ∈ N+. Following the
common i.i.d. assumption, each instance can be described
as a vector x =[x1, x2, ..., xw] ⊆ X1 ∪ X2 ... ∪ Xw ⊆ Rm

with a ground truth label y ∈ {0, 1}, where y = 1 indicates
a favorable outcome and y = 0 indicates an unfavorable
outcome. We train a binary classification model denoted as
f(x). It is critically essential to emphasize that the binary
classifier f (x)’s coefficients remain fixed after training with
the original dataset. It reflects real-world scenarios where it
is often impractical or impossible to alter an institution’s
established decision-making algorithms. By making minimal
modifications to the original dataset, an algorithmic recourse
method helps to flip unfavorable predictions to favorable ones
with corresponding flipping costs. Notably, these flips can
be achieved without changing the decision-making algorithm
f (x), which is consistent with the fixed model practice.

B. Fairness Notions and Metrics

A dataset D contains the sensitive attribute S, the decision
label Y , and additional attributes within X so that D =
{S,X, Y }. The sensitive attribute S serves as a critical role
in indicating the majority and minority groups. The sensitive
attribute and decision label are binary, where S = 1 represents
the majority group and S = 0 represents the minority group,
respectively, with S ∈ {1, 0} covering the entire scope of
attribute S. Similarly, Y = 1 denotes favorable outcomes,
while Y = 0 denotes unfavorable outcomes.

Definition 1: Statistical Parity. Given observational data
P (S,X, Y ), if it exhibits statistical parity between S and Y ,
denoted as S ⊥ Y , then the data is considered fair.

Based on statistical parity, numerous fairness metrics have
been rigorously suggested, including predictive parity, oppor-
tunity equality, equalized odds, and other measurements [22],
[23]. In this work, we adopt and meticulously apply the risk
difference, P (Y = 1|S = 1) − P (Y = 1|S = 0), denoted as
Q, to quantify the strength of bias [24].

C. Algorithmic Recourse

Cost-based algorithmic recourse methods, distinct from the
boundary distance-based methods, are developed to measure
specific flipping costs for individuals requiring prediction
reversals [15]. Consider an individual x for whom a binary
decision model makes an unfavorable prediction, indicated as
f (x) = 0. After applying a recourse method, we identify an

action a with a minimal flipping cost, effectively turning this
unfavorable prediction into a favorable one, i.e., f (x+ a) =
1. Here, a represents feasible actions within realistic and
ethical bounds that can be applied to an original data point x’s
undesirable prediction, with “minimal flipping cost” denoting
the least modification needed on actionable features. Actions
must stay within the dataset’s observed feature ranges and
cannot modify immutable features like gender, race, and
other features that cannot be changed in real-world scenarios.
To quantify the cost associated with prediction reversal, we
utilize the flipping cost function cost (a) from an algorithmic
recourse methodology [15]. The most prevalent representation
of the cost function is,

min cost (a;x)

s.t. f (x+ a) = 1,

where f (x) = 0, a ∈ A (x)

(1)

Here, cost (a;x) → R+ is a quantitative function for
precisely calculating the flipping cost associated with a rever-
sal prediction. Furthermore, this function rigorously adheres
to two essential principles: i). cost (0;x) = 0, no action
means no cost; ii). cost (a;x) ≤ cost (a+ τ ;x), more actions
bring about more costs, where τ represents the additional
actions taken. Additionally, A (x) denotes a set of feasible
actions that x can take, generated by a recourse strategy. It is
crucial to note that A (x) plays a key role in determining the
actions that an individual can reasonably take to reverse the
decision in their favor without changing the decision-making
algorithm f (x). The optimal action a is determined by the
dual criteria of minimizing the cost function cost (a;x) while
concurrently shifting the prediction outcome from f(x) = 0
to f(x + a) = 1. We collect flipping costs for those with
unfavorable predictions, expressing them as a vector that
C = [c1, c2, ..., cn] ⊆ Rn, where ci > 0, and n represents
the number of unfavorable predictions. In summary, given a
decision-making model f(x) and instances x with unfavorable
predictions, the recourse method identifies feasible actions
a, which can be applied to flip the undesirable predictions,
generating a corresponding flipping cost for each instance,
resulting in a cost vector C representing the flipping costs
for all undesirable predicted instances.

III. METHODOLOGY

A. Achieving Fairness via Global Optimization (AVIATOR)
With a dataset D = {S,X, Y }, we denote the rejected

i-th individual as (si, xi, yi), which can be extended to
(s+i , s

−
i , xi, yi) using the one-hot encoding strategy for gener-

ality. In this context, s+i and s−i are mutually exclusive since
they belong to the majority group and minority group sepa-
rately. Also, s+i and s−i satisfy the properties that s+i + s−i = 1
and s+i 6= s−i so that we can obtain the total number of the
majority group as s+t =

∑n
i=1 s

+
i , and the total number of

the minority group as s−t =
∑n

i=1 s
−
i .

Next, we generate a vector U = [u1, u2, ..., un] ⊆ Rn,
where each ui ∈ {0, 1} is strategically employed as an opti-
mization variable. Specifically, ui with a binary value indicates



whether the i-th individual is flipped. An initial unfavorable
outcome is denoted by yi = 0, and after flipping (ui = 1),
a favorable outcome is represented by ŷi = yi + ui = 1.
In general, Ŷ represents the new predictions after the flipping
steps and the range of Ŷ is {0, 1}. The risk difference quan-
tifies the updating disparity of the probabilities with favorable
outcomes between the majority and minority groups, defined
as Q = P(Ŷ = 1|S = 1) − P(Ŷ = 1|S = 0). This measure
can be interpreted as a representation of bias strength after the
allocation process. Thus,

Q (ui) = P(Ŷ = 1|S = 1)−P(Ŷ = 1|S = 0)

=

n∑
i=1

(
ŷi · s+i
s+t

− ŷi · s−i
s−t

)
(2)

The flipping number for the majority group N+ (ui) is,

N+ (ui) =

n∑
i=1

(ŷi · s+i )−
n∑

i=1

(yi · s+i ) =

n∑
i=1

s+i · ui (3)

Similarly, the flipping number for the minority group is
N− (ui) =

∑n
i=1 s

−
i · ui. Additionally, the total flipping

number Nt (ui) is,

Nt (ui) =

n∑
i=1

s+i · ui +
n∑

i=1

s−i · ui =

n∑
i=1

ui (4)

As a result, the total flipping cost Ct (ui) is,

Ct (ui) = C ·U =

n∑
i=1

ci · ui (5)

Therefore, our objective integrates two core principles from
a global perspective. Firstly, we aim to maximize the number
of individuals required to flip unfavorable predictions given
a fixed-cost budget. Simultaneously, we aim to fulfill group-
level fairness, ensuring that both majority and minority sub-
groups have a fair opportunity to make favorable predictions
after recourse. These two principles are pursued concurrently,
demonstrating a comprehensive strategy rather than isolated
adjustments. To fulfill these principles, we develop an integer
programming approach to find an optimal flipping strategy
that maximizes fairness with a fixed-cost budget. Considering
the constraints imposed by a limited budget b, we formulate
an objective function L that makes an effort to accomplish
these goals. Specifically, L is designed to minimize Q (ui)
(Eq. (2)) in order to mitigate discrimination while concurrently
maximizing Nt (ui) (Eq. (3)) to increase the number of flips
for unfavorable predictions. This approach can be expressed
as the following formulation,

L (ui) = min
ui∈{0,1}

(Q (ui))
2 − λ · Nt (ui)

s.t.

n∑
i=1

ci · ui ≤ b, λ ≥ 0
(6)

Algorithm 1 AVATAR
Input: R− = {s−i , xi, yi, ci}pi=1, M = {sj , xj , yj , cj}nj=1,

k = 0, D̃ ← ∅, ε.
Output: D̃

1: for i = 1 to p do
2: if Q(·) > ε then
3: D̃ ← D̃ ∪ {s−i , xi, yi, ci}
4: yi ← 1
5: pop R− = {si, xi, yi, ci}i=i

6: pop Mj = {sj , xj , yj , cj}j=i

7: else
8: while M do
9: D̃ ← D̃ ∪ {sj , xj , yj , cj}k=0

10: yk ← 1
11: pop Mj = {sj , xj , yj , cj}j=k

12: k ← k + 1 . Increment k to track the next
instance in M

13: if Q(·) > ε then
14: break
15: return D̃

IV. EXPERIMENT

We utilize two datasets for our experiments: the German
Credit Dataset [25] and the Adult Census Dataset [26]. We
identify instances with unfavorable predictions from estab-
lished Logistic Regression [27] and XGBoost [28] as bi-
nary decision models. We employ two algorithmic recourse
methods to flip these unfavorable predictions: the actionable-
recourse method [15] and the interventional tree method [29].
Both methods are applied to flip the unfavorable predictions
from the Logistic Regression and XGBoost models, generat-
ing corresponding flipping costs and detailing the necessary
modifications on the original datasets. Our implementation is
developed based on Gurobi (Ver. 9.0.0).

A. Experimental Datasets

The German Credit Dataset targets predicting an individual’s
credit risk, either good or bad, based on multiple attributes. We
treat “Gender” as a sensitive attribute with binary values. Here,
“male” refers to the majority group, and “female” refers to the
minority group, denoted as S = 1 and S = 0, respectively.
The initial bias value for this German Credit dataset is 7.48%.
The Adult Census Dataset commonly used in fairness-aware
machine learning, is another dataset chosen in this experiment.
We consider “sex” as a sensitive attribute with a binary value,
where the value 1 refers to “Male” and the value 0 refers
to “Female”, denoted as S = 1 and S = 0, respectively.
Additionally, the task is to predict whether an individual has
a high income (“>50K”) or a low income (“≤50K”) in a
financial year. The initial bias value for this dataset is 19.53%.

B. Baselines

1) Boundary Distance Evaluation Approach (MASAGE):
We present MASAGE as a comparative framework to high-
light the limitation of the boundary distance-based method in
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Fig. 1. Comparison of fairness for German Credit (above) and Adult (below) datasets. With the left and right corresponding to the Logistic Regression and
XGBoost models, respectively.

fairness. MASAGE, inspired by the work of Kamiran and
Calders [30], prioritizes instances based on their distances
to the decision boundary, with a particular focus on the
minority group. Here, given an established decision-making
model and a data point, the boundary distance is defined as
the absolute difference between its predicted outcome and a
prediction threshold. The MASAGE baseline works in the
following way. Evaluation via Boundary Distance: Instances
in the majority group are arranged into a sequence based
on ascending boundary distances, and similarly, instances
in the minority group are independently subjected to the
same procedure. The idea behind this arrangement is that the
instances nearer the decision boundary may have the outcomes
reversed more easily, indicating fewer efforts required for
flipping action; Prioritizing Minority Group: MASAGE starts
by prioritizing the minority group, making sequential flipping
based on their boundary distances to reduce bias, ultimately
promoting a fairer representation in the decision-making pro-
cess; Managing Remaining Instances: After flipping almost all
instances from the minority group, the remaining instances,

which may include a few from the minority group and all
from the majority group, are re-ranked and then flipped by
their boundary distances with increasing order.

The reasons for selecting MASAGE as a baseline are
threefold: i) We aim to illustrate the limitation of the boundary
distance metric with the MASAGE baseline because it particu-
larly utilizes boundary distance as the primary criterion for its
flipping operation; ii) The straightforward boundary distance
metric makes MASAGE an ideal baseline for demonstrating
the advantages of our proposed method; iii) The MASAGE
prioritizes the minority group, providing a distinctive compar-
ative perspective, which allows us to indicate how our method
more effectively achieves fairness across groups.

2) Localized Fairness Adjustments (AVATAR): As seen in
Algorithm 1, we detail the AVATAR baseline, a local adjust-
ment strategy for decision reversal.

This method has three modules. Input: R− represents the
individuals of the minority group that are not favored by the
decision model, which has p instances. M contains all indi-
viduals with unfavorable predictions, including majority and
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Fig. 2. Comparison of total flipping number for German Credit (above) and Adult (below) datasets of glocal view. With the left and right corresponding to
the Logistic Regression and XGBoost models.

minority groups, totaling n instances. R− and M are sorted
increasingly based on the flipping costs from the recourse
method. The iterator variable k is initialized to 0 to track
the instance in M . D̃ is an empty set and stores the flipped
instances. And the ε is the bias threshold value; Main Loop:
For each individual in R− (Line 1), prioritizing the minority
group if the bias measurement Q exceeds a threshold ε (Line
2). The individual who meets the condition is added to D̃ with
the flipping of its unfavorable prediction (Line 2-4). Then,
remove this instance from R− and the corresponding instance
in M (Lines 5-6). Otherwise, while M is not empty (Lines
7-8), the algorithm selects the individual in M tracked by k,
flips its prediction, and pops the corresponding instance in M
(Lines 9-11). Then, the tracker k is incremented (Line 12).
This process continues until Q exceeds ε, or M is empty
(Lines 13-14); Output: The algorithm returns D̃, a set of
flipped all individuals (Line 15).

The reasons for selecting AVATAR as a baseline are twofold:
i). As a suitable contrast to our global optimization approach,
AVATAR’s reliance on a local adjustment strategy highlights
the shortcomings in resource allocation; ii). The AVATAR’s

iterative approach cycles focus on majority and minority
groups, harmoniously integrating cost-efficiency, fairness, and
locality in the allocation process.

C. Experimental Results And Analysis

1) Comparison of Fairness: A comprehensive representa-
tion of this comparison is shown in Fig. 1, which illustrates
the fairness trends of our study methods.
MASAGE. Results: After a sharp initial fall, the bias curve
of the MASAGE baseline soon recovers. This pattern is con-
sistently observed across two datasets, with the Adult dataset
exemplifying the trend prominently; Analysis: MASAGE first
prioritizes the minority group instances closest to the decision
boundary, leading to a rapid decrease in bias. As it starts
addressing the remaining instances, which consist of a few
instances from the minority group farther from the decision
boundary and a large number of instances from the majority
group close to the boundary, the bias begins to increase. This
rise is due to prioritizing majority group instances near the
boundary after the closest minority group instances have been
flipped. The bias stabilizes at zero when all instances are
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Fig. 3. Comparison of flipping number for German Credit (above) and Adult (below) datasets of local view. With the left and right corresponding to the
Logistic Regression and XGBoost models.

flipped. Because of MASAGE’s strong focus on the minority
group, it has a propensity to reintroduce bias swiftly after it
has been decreased.

AVATAR. Results: The bias curve of the AVATAR baseline
exhibits a sharp reduction around ε, which is set to 0.025 in
Algorithm 1, holding this value around until the bias value
falls to 0. AVATAR performs more fairly than the MASAGE
baseline; Analysis: AVATAR is a cost-sensitive approach,
which starts by flipping instances from the minority group to
reduce bias. When the bias drops below ε, it shifts its focus to
the majority group, targeting instances with the lowest flipping
costs. If the bias surpasses ε, the focus reverts to the minority
group. This iterative approach between groups enables a stable
bias trajectory, contrasting with the behavior observed in the
MASAGE baseline.

AVIATOR. Results: Although AVIATOR’s bias value fluc-
tuates as the allocation continues, they are constantly lower
than MASAGE and AVATAR; Analysis: AVIATOR aims to
maximize the utilization of the budget globally while providing
both groups a fair opportunity to reverse undesirable outcomes.
AVIATOR can provide a lower bias value with closely matched
total flipping numbers by fine-tuning the hyperparameter λ in
Eq. (6) and consistently generate smaller bias values through-
out the process than MASAGE and AVATAR. MASAGE with

the boundary distance metric fails to capture accurately the
actual effort required to flip a prediction, thereby revealing its
limitation in individual prediction reversal. Moreover, main-
taining fairness during the allocation process is challenging
for this distance-based strategy, resulting in a more biased
output. Additionally, despite using the adjustment via ε to
modify fairness, the cost-sensitive AVATAR cannot reach the
level of fairness attained by our AVIATOR method.

2) Comparison of Flipping Number: To illustrate the ad-
vantages of our AVIATOR solution, we will provide global
(Fig. 2) and local (Fig. 3) perspectives of the flipping numbers
under the same cost constraint.
MASAGE. Results: Overall, MASAGE flips less under the
same budget b than the other two approaches. However,
MASAGE performs remarkably well for Ct ≤ 8000 in the
Adult dataset; Analysis: The MASAGE strategy has an inher-
ent prioritization towards flipping instances within the minority
group, which may induce a delay when addressing instances
from the majority group.
AVATAR & AVIATOR. Results: We tune the hyperparameter
λ in Eq.(6) to achieve the total flipping number of the
AVIATOR near that of the AVATAR. According to Fig. 3,
the AVIATOR approach demonstrates a preference for the
minority group in the 10-45 and 0-3000 ranges of the German
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Fig. 4. The impact of λ for the AVIATOR method on different datasets and models, displayed in sequence from top to bottom: first and second images
show the German Credit and Adult datasets with the Logistic Regression model, respectively; third and fourth images illustrate the German Credit and Adult
datasets with the XGBoost model.

Credit dataset. Similar findings can be observed in the Adult
dataset, where the AVIATOR prefers the minority group in
the 1500–12000 and 400–25000 ranges; Analysis: Although
the total flipping number of AVIATOR and AVATAR are
relatively similar, we notice that AVIATOR flips a higher
proportion of instances from minority groups at particular Ct
levels. While AVATAR works cyclically to ensure fairness, it
may not always be the most effective. In certain iterations,
some minority instances may remain unflipped if they do not
meet the criteria for flipping. Conversely, AVIATOR employs
a continual strategy that considers all instances without giving
the minority group special priority. AVIATOR can allocate

resources flexibly by not segregating the instances into sep-
arate cycles. In contrast to AVATAR’s cyclical approach, this
implies that the minority instances can be flipped earlier in the
process if it has a relatively low flipping cost. This experiment
reveals that MASAGE, with boundary distance metric, fails to
maximize the number of flips under resource constraints, thus
not reflecting the effort needed to flip instances. AVATAR,
while cost-sensitive, is not the most effective due to its
local adjustments, leading to delays in flipping and an undue
bias towards minority groups. By flipping more instances
within the same budgetary constraints, precisely estimating the
effort needed for reversal, and maximizing the utilization of



resources, our method outperforms these approaches.
3) The Impact of Hyperparameter λ on Q: As delineated

by Eq. (6), the λ emerges as a pivotal determinant in the
AVIATOR framework, controlling the optimization equilib-
rium between the flipping number and the bias metric Q.
This interplay of λ in optimization reveals that an increase
in λ makes the system more inclined to maximize flipping
instances, potentially at the expense of adequate bias reduc-
tion. On the other hand, a more conservative λ recalibrates
the system’s emphasis toward pronounced bias reduction,
demonstrating discernment in instance selection for flipping,
prioritizing significant bias mitigation. This trade-off balance
indicates that an increase in λ correlates with a noticeable rise
in bias across both datasets, empirically supported by Fig. 4.

V. CONCLUSION

Our study provides critical insights into the limitations
of traditional fairness approaches in machine learning, par-
ticularly those relying heavily on the concept of decision
boundary distance. We have demonstrated that this conven-
tional method fails to address the practical aspects of altering
model predictions, especially in terms of feasibility and cost-
effectiveness. Our research proposes an alternative approach
that incorporates cost functions to assess and implement
actionable changes, thereby balancing fairness with practical
applicability. This approach not only enhances the fairness of
the outcomes but also ensures that the modifications are feasi-
ble and within reasonable budgetary constraints. Ultimately,
this balanced approach will contribute to building trust in
machine learning systems and ensuring their beneficial impact
on society.
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