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Abstract—With the prevalence of machine learning in many
high-stakes decision-making processes, e.g., hiring and admission,
it is important to take fairness into account when practitioners de-
sign and deploy machine learning models, especially in scenarios
with imperfectly labeled data. Multiple-Instance Learning (MIL)
is a weakly supervised approach where instances are grouped
in labeled bags, each containing several instances sharing the
same label. However, current fairness-centric methods in machine
learning often fall short when applied to MIL due to their
reliance on instance-level labels. In this work, we introduce a
Fair Multiple-Instance Learning (FMIL) framework to ensure
fairness in weakly supervised learning. In particular, our method
bridges the gap between bag-level and instance-level labeling
by leveraging the bag labels, inferring high-confidence instance
labels to improve both accuracy and fairness in MIL classifiers.
Comprehensive experiments underscore that our FMIL frame-
work substantially reduces biases in MIL without compromising
accuracy.

Index Terms—fairness, multiple-instance learning, weak super-
vised learning

I. INTRODUCTION

Machine learning algorithms have been widely used in
many high-stakes applications, such as hiring and banking.
Since conventional machine learning models primarily aim
to maximize predictive accuracy, they may incur or exac-
erbate unintended biases in these high-stakes scenarios. As
bias in machine learning becomes a matter of concern, it
is imperative to ensure that machine learning models can
strike a balance between accuracy and fairness. Recently, many
fairness-aware machine learning solutions and models have
been proposed to mitigate unfairness [1]–[25], including data
modification, model tweaking, and decision flipping, in the
supervised learning paradigm. Although these methods have
successfully balanced model performance and fairness, it is
important to note that many tasks struggle to obtain strong
supervision information, such as fully verified ground-truth
labels, due to the high costs associated with data labeling
and acquisition. Taking American Census Data [26] as an
example, it is common that data are collected from a household
perspective rather than from individuals. In contrast, there is a
need to predict income at the individual level rather than the
household level. It is challenging to predict individual income
using household-based data due to the lack of individual-level

ground truth. It is worth pointing out that a transition from
conventionally strongly supervised learning to weakly super-
vised learning [27] may lead to existing bias detection and
mitigation algorithms being ineffective or unable to maintain
the proper balance between accuracy and fairness. Hence, it is
imperative to develop a new fair machine-learning framework
that can effectively mitigate bias in weakly supervised machine
learning.

In this paper, we target multiple-instance machine learn-
ing, one of the most important tasks in weakly supervised
learning, formulate a set of novel fairness metrics leveraging
the inexact bag labels, and propose a general framework to
mitigate adverse bias. The multiple-instance learning paradigm
leverages inexact supervision from bag labels to develop a
robust instance-level model in situations where only coarse-
grained label information is available. The proposed bias
mitigation framework for the MIL task focuses on two widely
used metrics, demographic parity [28] and equalized odds [1].
We follow the in-processing bias mitigation paradigm and
design fairness constraints that are effective in multiple-
instance learning without instance labels. Inspired by pseudo-
labeling [29], we exploit as much unlabeled instance data as
possible to improve the accuracy and fairness of a classifier.
Our experimental results demonstrate that FMIL maintains
accuracy while achieving fairness, outperforming common
baselines. Our main contributions are as follows.

• We propose a framework that takes fairness into consid-
eration in multiple-instance learning settings. To the best
of our knowledge, there has not been any work that aims
to improve fairness in multiple-instance learning settings.

• We design novel fairness constraints that can mitigate
bias when only coarse-grained labels are available. In-
tegrating these constraints with the existing MIL learn-
ing paradigm, we develop bias mitigation solutions for
weakly supervised learning.

• We provide empirical evidence showing the ability of the
FMIL framework to sustain a high level of accuracy while
ensuring fairness.



II. RELATED WORKS

Fair machine learning has been studied extensively in the
literature. A set of fairness notions and metrics have been
proposed in the past years. Among them, demographic par-
ity [28], [30] and equalized odds [1] which measure the de-
pendencies between the decision and the sensitive information
have been widely adopted. Based on the notions, three types of
approaches [1], [7], [10], [14], [31], [32], pre-processing, in-
processing, and post-processing, have been proposed to tackle
bias in machine learning. Pre-processing methods focus on
adjusting training data to eliminate bias before model training,
such as re-sampling or re-weighing instances to ensure fairness
in representation. Massaging [7] flips the labels of selected ex-
amples close to the decision boundary to eliminate discrimina-
tion. Reweighting [5] assigns weights to individuals to balance
the majority and minority groups. Preferential sampling [33]
resamples subgroups to make the dataset discrimination-free.
Most of the in-processing approaches, e.g., [34]–[36], involve
directly incorporating fairness constraints or objectives during
the model training process, which may include modifying
the learning algorithm itself. Those approaches are flexible
in balancing the trade-off between model performance and
fairness requirements. The post-processing approaches adjust
the output of already trained models to correct for bias,
typically by altering decision thresholds for different groups.
Hardt et al. [1] develop an optimization solution to adjust
any learned predictor to remove discrimination according to
equalized odds. Kamiran et al. [37] exploit the low-confidence
region of a single or an ensemble of probabilistic classifiers
for discrimination reduction. Together, these strategies aim
to enhance fairness and reduce discrimination in machine
learning applications, with a trade-off between fairness and
model performance.

The majority of fair machine learning literature focuses on
supervised learning, where models are trained exclusively with
precisely labeled data, which can be limiting and expensive to
obtain. Semi-supervised learning (SSL) [38], [39] is a machine
learning approach that bridges the gap between supervised
and unsupervised learning by utilizing both labeled and un-
labeled data. Translating fairness principles from supervised
to semi-supervised learning involves adapting bias mitigation
techniques to work with unlabeled data. A few works employ
neural networks to optimize the trade-off between fairness and
accuracy in a semi-supervised setting where only a subset
of samples are labeled. Noroozi et al. [40] utilize pseudo-
labeling to exploit unlabeled data to improve performance.
Zhang et al. [41] leverage pseudo-labeling to predict labels
for unlabeled data, divide the whole dataset into groups, and
finally re-sampled within the groups.

Despite efforts at semi-supervised learning, fair weakly
supervised learning has rarely been considered in the literature.
Weakly supervised learning [42]–[44] is a branch of machine
learning that deals with scenarios where the training data is
imprecisely labeled. The goal is to develop models that can ef-
fectively leverage this imperfect information to make accurate

predictions, enhancing the ability to work with less-than-ideal
data while minimizing the labor-intensive process of manual
labeling. In the weakly supervised learning setting, only partial
supervision information is given while it is not exactly as
desired. A typical scenario is multiple-instance learning where
only coarse-grained label information is available. Thus, we
cannot apply existing fairness-aware learning techniques di-
rectly to multiple-instance learning. This leaves a fundamental
challenge – how to leverage the coarse-grained labels and
alleviate the adverse bias in the MIL tasks. To tackle these
challenges, we formulate the fair multiple-instance learning
problem and propose an in-processing framework, namely
FMIL, to minimize the objective with a fairness regularizer.
To the best of our knowledge, FMIL is the first fairness-aware
classification algorithm in the weakly supervised learning
paradigm.

III. PRELIMINARIES

We first introduce the classic fairness-aware classification
that incorporates fairness constraints to eliminate statistical
discrepancies between the prediction and the sensitive infor-
mation. We present the key symbols used throughout the paper
in Table I. Then, we formally introduce the multiple-instance
learning problem.

Throughout the paper, the set of features is represented by
X while the prediction attribute is denoted by Y . Z denotes
sensitive information, such as gender, age, and race. Without
loss of generality, we assume the sensitive information S and
the decision Y as binary. The positive/favored value is denoted
by 1, and the negative/unfavored value is denoted by −1. The
binary setting can be readily extended to non-binary cases [45],
[46]. The subscript after variables indicates the sample index.
For example, Xi and Yi represent the features and labels for i-
th sample for the strongly supervised learning while Xi,j in the
conventional strong supervised machine learning setting. In the
weakly supervised learning setting, Xi,j and Yi,j represent the
instance features and labels for the j-th sample in the i-th bag
in the MIL setting. Specially, the i-th bag label is denoted as
Yi,∗. The lowercase letters with scripts represent the realization
values. For example, xi,j denotes the feature values of Xi,j .

A. Fairness-aware classification

The learning goal of conventional strong supervised learning
is to find a classifier f : X → Y from the training dataset
Ds =

{
Xi, Zi, Yi

}
. In a traditional classification problem,

we minimize the average of the classification errors (a.k.a the
empirical loss) given by

min
f

EDs [1f(Xi)6=Yi
] (1)

where 1(·) is an indicator function. The indicator function can
be replaced with various surrogate functions, such as the hinge
function or the logit function [47].

Several fairness notions or definitions are proposed in the
literature, such as demographic parity [28] and equalized
odds [1]. Quantitative fairness constraints or regularization



Symbols Definitions and Descriptions
i the number of samples (bags in MIL)
j the number of instances{
Xi, Zi, Yi

}
a strongly supervised dataset Ds

Xi the features of i-th sample
Yi the label of i-th sample
Zi the sensitive attribute of i-th sample
{Xi,∗, Zi,∗, Yi,∗} a weakly supervised dataset Dw

Xi,∗, xi,j the features of j-th instance in the i-th
bag/its realization values

Yi,j , yi,j the label of j-th instance in the i-th bag/its
realization values

Yi,∗ the label of the i-th bag
Zi,j , zi,j the sensitive attribute of j-th instance in the

i-th bag/its realization values
f(·) a classifier
FM[·] the fairness constraints of certain metric M

TABLE I
TABLE OF SYMBOLS AND NOTATIONS.

terms are designed to mitigate bias regarding those correspond-
ing fairness notions. For example, the demographic parity can
be quantitatively formulated as:

F[·] = EXi|Zi=1[1f(Xi)=1]− EXi|Zi=−1[1f(Xi)=1]. (2)

In-processing bias mitigation algorithms incorporate the quan-
titative and differentiate fairness constraints or regularization
terms into the objective function to ensure fairness in predic-
tion, then we have:

min
f

{
αEDs

[
1f(Xi) 6=Yi

]
+ (1− α)F

[
f(Xi), Zi, Yi

]}
(3)

where F[·] indicates the fairness loss, which imposes fairness
on the prediction of the model. α indicates the penalized
magnitude that controls the trade-off between fairness and
classification loss.

B. Multiple-instance learning

We start with a weakly-labeled dataset Dw ={
Xi,∗, Zi,∗, Yi,∗

}N
i=1

where each element consists of a
bag of mi instances such that Xi,∗ =

{
Xi,j

}mi

j=1
and

Zi,∗ =
{
Zi,j

}mi

i=1
. It is worth noting that there is only a

single label Yi,∗ associated with the i-th bag in the dataset.
In other words, the instance labels Yi,j are unavailable during
training. Additionally, it is common to assume that a bag is
positive, i.e., Yi,∗ = +1, if there exists at least one instance
that is positive. We can formulate the assumptions of the MIL
problem in the following form:

Yi,∗ =

{
−1, ∀j ∈ {1, 2, . . . ,mi}, Yi,j = −1
+1, otherwise

(4)

Further, we can reformulate it using the maximum operator:

Yi,∗ = max
j
{Yi,j} (5)

Multiple-instance learning aims to learn an instance-based
classifier Yi,j = h(Xi,j) from the dataset Dw organized
by bags. There is a challenge for applying Eq. (3) to the

training dataset Dw where the instance labels are missing. A
straightforward approach to infer the instance label Yi,j from
the bag Yi,∗ is to assign the instance labels Yi,j = Yi,∗,∀j =
{1, 2, . . . ,mi}. This process is referred to as Assign As Bag
labels (AAB). Blum and Kalai [48] described a reduction
from multiple-instance examples to PAC-learning with one-
side random classification noise. The basic idea of this method
is to consider all instances from a negative bag as negative but
randomly choose one sole instance as positive from a positive
bag. This method is referred to as Assign At Random (AAR).

C. Attention-based multiple-instance learning

The aforementioned approaches that adhere to the premise
in Eq. (5) exhibit a clear disadvantage, namely, that the max
operator is non-trainable and inconvenient to incorporate with
deep neural networks. Ilse et al. [49] propose a fully trainable
MIL pooling based on the attention mechanism. Especially,
the bag labels are considered a weighted aggregation of their
instance labels. To model the weighted aggregation, Ilse et al.
let Hi = {hi,j |j ∈ 1, ...,mi} denote the instance represen-
tation of the i-th bag. Then, they formulate the instance-bag
connection by the weighted average operator:

Ri =

mi∑
j=1

ai,jhi,j , (6)

and the weights are derived from the attention mechanism:

ai,j =
exp

{
w> tanh

(
V h>i,j

)}∑mi

j=1 exp
{
w> tanh

(
V h>i,j

)} , (7)

where w ∈ RL×1 and V ∈ RL×D are trainable parameters, D
is the dimension of the hidden representation hi,j , and L is a
hyperparameter that controls the dimensions of hidden space
of the attention mechanism. Then the aggregated representa-
tion Ri is utilized to predict the label of the i-th bag. The
hyperbolic tangent tanh(·) ensures both negative and positive
values for proper gradient flow.

IV. FAIR MULTIPLE-INSTANCE LEARNING

Fair multiple-instance learning aims to find an instance-
based classifier that minimizes the empirical loss at the bag
level while satisfying certain fairness constraints at the in-
stance level. The objective function for FMIL can be refor-
mulated as follows:

min
h

{
αEDw

[
1
max

(
h(Xi,j)

)
6=Yi,∗

]
+(1−α)F

[
h(Xi,j), Zi.j , Yi,j

]}
(8)

Since the instance-based labels Yi,j are unavailable in the
MIL setting, it is not trivial to construct a bias regularizer F[·]
to achieve fairness in MIL. In this section, we propose new
formulations for existing fairness constraints tailored for MIL
and refer to the proposed framework as FMIL.



A. Achieve demographic parity in MIL

Demographic parity requires the decision made by the
classifier to be independent of the sensitive attribute, which
is quantified with regard to risk difference, i.e., the difference
of the positive predictions between the favorable group and
non-favorable group. The risk difference fairness constraint
for the MIL setting is expressed as:

FRD[·] = EXi,j |Zi,j=1[1f(Xi,j)=1]−EXi,j |Zi,j=−1[1f(Xi,j)=1]
(9)

It follows that

FRD[·] =EXi,j

[
P (Zi,j = 1|Xi,j)

P (Zi,j = 1)
1h(Xi,j)=1

+
P (Zi,j = −1|Xi,j)

P (Zi,j = −1)
1h(Xi,j)=−1 − 1

] (10)

The proposed risk difference constraint in Eq. (10) can be
applied to the joint objective function Eq. (8) directly without
requiring the instance label Yi,j .

B. Achieve equalized odds in MIL

Equalized odds requires that the sensitive attributes and the
predicted labels are independent conditions on the true label.
The challenge here is that the instance labels Yi,j are not
available in the training dataset. Despite AAB and AAR dis-
cussed in the aforementioned preliminaries, the induced errors
and noise lead to significant performance decreases. Inspired
by the pseudo-label approach [29], we design a confidence-
based method to tackle the errors and noise. For negative
bags, we can consider that all the instances are negative. Thus
the equalized odds for instances from the negative bags is
formulated as:

FnegEO = EXi,j |Yi,j=−1[
P (Zi,j = 1|Xi,j , Yi,j = −1)
P (Zi,j = 1|Yi,j = −1)

1h(Xi,j)=1

+
1− P (Zi,j = 1|Xi,j , Yi,j = −1)

1− P (Zi,j = 1|Yi,j = −1)
1h(Xi,j)=−1]− 1

(11)
For positive bags, the instance labels are derived from highly
confident predictions.

Yi,j =


1, sigmoid

(
h(Xi,j)

)
≥ λ

−1, sigmoid
(
h(Xi,j)

)
≤ (1− λ)

0, otherwise

(12)

where λ indicates a threshold for the degree of confidence.
Therefore, the equalized odds for instances from the positive
bags is defined as:

FposEO = Y 2
i,j

{
EXi,j |Yi,j

[
P (Zi,j = 1|Xi,j , Yi,j)

P (Zi,j = 1|Yi,j)
1h(Xi,j)=1

+
1− P (Zi,j = 1|Xi,j , Yi,j)

1− P (Zi,j = 1|Yi,j)
1h(Xi,j)=−1]− 1

}
(13)

The proposed risk difference constraint in Eq. (11) and
Eq. (13) can be applied to the joint objective function Eq. (8)
directly without requiring the true instance label Yi,j . The
integration is illustrated in Algorithm 1.

Algorithm 1 FMIL EO algorithm

Input: Dw =
{
Xi,∗, Zi,∗, Yi,∗

}N
i=1

, λ, α,Epoches
Output: Parameters θ of the instance classifier h
for t := 1 to Epoches do

for i = 1 to N do
for j = 1 to mi do

if Yi = 1 then

Yi,j =


1, sigmoid

(
h(Xi,j)

)
≥ λ

−1, sigmoid
(
h(Xi,j)

)
≤ (1− λ)

0, otherwise
else
Yi,j = Yi

end if
end for

end for
∇1(θ) = ∇θ

{
αEDs

[
1f(Xi)6=Yi

]}
∇2(θ) = ∇θ

{
(1− α)F

[
f(Xi), Zi, Yi

]}
θt = θt−1 −

[
∇1(θ) +∇2(θ)

]
end for

V. EXPERIMENT

We evaluate the proposed framework and several baselines
in various MIL settings using several real-world datasets. We
conduct extensive experimental results showing our method
outperforms other methods with better trade-offs between
accuracy and fairness.

A. Dataset

We evaluate the baselines and proposed methods on two
real-world datasets. The Adult [26] dataset contains 48, 842
instances, including 14 features, such as age, sex, household,
and education. The goal of the Adult dataset is to predict
whether an individual earns more than 50, 000 US dollars a
year. We consider sex as the sensitive attribute and income
as the target attribute. The ACSIncome [50] datasets is an
improved alternative to the Adult dataset. The ACSIncome
dataset consists of 1, 664, 500 samples from 2014-2018 for
all 50 U.S. states and Puerto Rico and contains 10 features,
including age, class of worker, educational attainment, marital
status, occupation, etc. In this dataset, we consider race as
the sensitive attribute with two values. white and black. For
both datasets, we construct bags based on their similarities and
create the bag labels according to the max mechanism.

B. Experimental setting

We implement three baseline methods and compare them
with the proposed method. We compare these methods with
regard to risk difference and equalized odds separately. The
three conventional baselines are trained as follows.
• FReg: a classic fair classifier [4] is trained on strongly

supervised data where the instance labels are available.
• FAAB: a classic fair classifier is trained on the bag labels

but the instance labels are derived using the AAB method.



Fig. 1. Trade-off between accuracy and risk difference in Census Adult (left) and ACSIncome (right).

Fig. 2. Trade-off between accuracy and equalized odds in Census Adult and ACSIncome.

• FAAR: a classic fair classifier is trained on the bag labels
but the instance labels are derived using the AAR method.

For the fair multiple-instance learning framework, we integrate
the proposed fairness constraints into the MIL and attention-
based MIL methods, namely FMIL and FAttMIL.

C. Experimental Result

1) Trade-off between accuracy and fairness.: We evaluate
the model performance in terms of fairness and accuracy.
For a fair comparison, we tune the hyper-parameters α for
each approach from α = 1 (where the bias is maximal as
there is no fairness penalty) until the bias is −0.05 (which
is the minimal legal requirement for fairness). We compare
their accuracy performance with varying fairness levels. The
results for achieving RD are shown in Fig. 1. It shows
that the proposed methods, FMIL and FAttMIL, can effec-
tively mitigate adverse bias without true instance-level labels
while maintaining better accuracy, compared with two baseline
methods FAAR and FAAB where the instance-level labels
are inferred from bag-level labels. The results for achieving
EO are shown in Fig. 2. It shows that the proposed methods,
FMIL and FAttMIL, outperform baselines. In addition, we
implement the confidence-based method to infer the true
labels. To promote the performance of the predictors used for
confidence calculation, we initially train the predictor for a

few epochs without fairness regularizers. After the classifier
has demonstrated a certain level of discrimination, the fairness
constraint will be applied to the rest of the training process. As
shown in Fig. 2, the refined methods (FMIL* and FAttMIL*)
can achieve higher accuracy with similar fairness levels. These
results also show the flexibility of the proposed framework in
dealing with the bias induced in the training process. These
results indicate that the utilization of FMIL in mitigating bias
by leveraging bag-level data is effective, as evidenced by the
consistency of the results across the two fairness metrics risk
difference (RD) and equalized odds (EO).

2) Training efficiency.: In our exploration of the perfor-
mance efficiency of various methods, we specifically evaluated
the training efficiency of each method. As depicted in Fig. 3,
the FAAB and FAAR methods demonstrate an ability to reach
fair predictions. However, their performance plateau suggests
limitations in achieving higher accuracy for classifying in-
stance labels. In stark contrast, FMIL and FAttMIL, our
proposed methods, consistently outperform the other methods
regarding accuracy. Their higher peaks in accuracy and lower
RD values indicate a more robust and reliable classification
capability. Notably, even though they exhibit a faster diver-
gence trend post the 40th epoch, their overall performance
trajectory remains superior. This underscores the efficacy of
our proposed frameworks in delivering both efficient and
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Fig. 3. Accuracy and bias of FMIL and baseline methods v.s. the training iterations in Census Adult and ACSIncome.

effective results.

VI. CONCLUSION

In this study, we investigate the algorithmic fairness prob-
lem in multiple-instance learning, the most common variant
of weakly supervised learning. We introduce an innovative
approach to combat bias in the multiple-instance learning
paradigm. Leveraging coarse-grained bag labels, our frame-
work FMIL and its variant, FAttMIL, infer instance-level
fairness constraints, effectively bridging the gap between tradi-
tional fairness methods designed for fully supervised settings
and the realities of MIL scenarios. Upon evaluation using
demographic parity and equalized odds as fairness metrics,
FMIL showcased commendable results. Our research reveals
that when fairness constraints are integrated into multiple-
instance learning algorithms, the proposed framework proves
advantageous not only in terms of accuracy but also in
fostering fairness.
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